Search Results for author: Chi-Sing Ho

Found 2 papers, 2 papers with code

Interpretable Classification of Bacterial Raman Spectra with Knockoff Wavelets

1 code implementation8 Jun 2020 Charmaine Chia, Matteo Sesia, Chi-Sing Ho, Stefanie S. Jeffrey, Jennifer Dionne, Emmanuel J. Candès, Roger T. Howe

Deep neural networks and other sophisticated machine learning models are widely applied to biomedical signal data because they can detect complex patterns and compute accurate predictions.

Classification General Classification +2

Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning

1 code implementation23 Jan 2019 Chi-Sing Ho, Neal Jean, Catherine A. Hogan, Lena Blackmon, Stefanie S. Jeffrey, Mark Holodniy, Niaz Banaei, Amr A. E. Saleh, Stefano Ermon, Jennifer Dionne

By amassing the largest known dataset of bacterial Raman spectra, we are able to apply state-of-the-art deep learning approaches to identify 30 of the most common bacterial pathogens from noisy Raman spectra, achieving antibiotic treatment identification accuracies of 99. 0$\pm$0. 1%.

Cultural Vocal Bursts Intensity Prediction

Cannot find the paper you are looking for? You can Submit a new open access paper.