1 code implementation • 22 Oct 2024 • Hu Xu, Po-Yao Huang, Xiaoqing Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Wen-tau Yih, Shang-Wen Li, Saining Xie, Christoph Feichtenhofer
This paper focuses on creating synthetic data to improve the quality of image captions.
no code implementations • 5 Nov 2023 • Sungho Jeon, Ching-Feng Yeh, Hakan Inan, Wei-Ning Hsu, Rashi Rungta, Yashar Mehdad, Daniel Bikel
In this paper, we show that a simple self-supervised pre-trained audio model can achieve comparable inference efficiency to more complicated pre-trained models with speech transformer encoders.
no code implementations • 2 Nov 2023 • Ching-Feng Yeh, Po-Yao Huang, Vasu Sharma, Shang-Wen Li, Gargi Gosh
We propose Fast Language-Audio Pre-training (FLAP), a self-supervised approach that efficiently and effectively learns aligned audio and language representations through masking, contrastive learning and reconstruction.
no code implementations • 14 Dec 2022 • Ching-Feng Yeh, Wei-Ning Hsu, Paden Tomasello, Abdelrahman Mohamed
With the development of hardware for machine learning, newer models often come at the cost of both increased sizes and computational complexity.
no code implementations • 2 Dec 2022 • Anuj Diwan, Ching-Feng Yeh, Wei-Ning Hsu, Paden Tomasello, Eunsol Choi, David Harwath, Abdelrahman Mohamed
Additionally, current speech recognition models and continual learning algorithms are not optimized to be compute-efficient.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +3
no code implementations • 16 Oct 2022 • Tzu-hsun Feng, Annie Dong, Ching-Feng Yeh, Shu-wen Yang, Tzu-Quan Lin, Jiatong Shi, Kai-Wei Chang, Zili Huang, Haibin Wu, Xuankai Chang, Shinji Watanabe, Abdelrahman Mohamed, Shang-Wen Li, Hung-Yi Lee
We present the SUPERB challenge at SLT 2022, which aims at learning self-supervised speech representation for better performance, generalization, and efficiency.
2 code implementations • 28 Oct 2021 • Yao-Yuan Yang, Moto Hira, Zhaoheng Ni, Anjali Chourdia, Artyom Astafurov, Caroline Chen, Ching-Feng Yeh, Christian Puhrsch, David Pollack, Dmitriy Genzel, Donny Greenberg, Edward Z. Yang, Jason Lian, Jay Mahadeokar, Jeff Hwang, Ji Chen, Peter Goldsborough, Prabhat Roy, Sean Narenthiran, Shinji Watanabe, Soumith Chintala, Vincent Quenneville-Bélair, Yangyang Shi
This document describes version 0. 10 of TorchAudio: building blocks for machine learning applications in the audio and speech processing domain.
no code implementations • 5 Apr 2021 • Yangyang Shi, Varun Nagaraja, Chunyang Wu, Jay Mahadeokar, Duc Le, Rohit Prabhavalkar, Alex Xiao, Ching-Feng Yeh, Julian Chan, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
DET gets similar accuracy as a baseline model with better latency on a large in-house data set by assigning a lightweight encoder for the beginning part of one utterance and a full-size encoder for the rest.
no code implementations • 5 Apr 2021 • Suyoun Kim, Abhinav Arora, Duc Le, Ching-Feng Yeh, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
We define SemDist as the distance between a reference and hypothesis pair in a sentence-level embedding space.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +14
no code implementations • 9 Nov 2020 • Xiaohui Zhang, Frank Zhang, Chunxi Liu, Kjell Schubert, Julian Chan, Pradyot Prakash, Jun Liu, Ching-Feng Yeh, Fuchun Peng, Yatharth Saraf, Geoffrey Zweig
In this work, to measure the accuracy and efficiency for a latency-controlled streaming automatic speech recognition (ASR) application, we perform comprehensive evaluations on three popular training criteria: LF-MMI, CTC and RNN-T.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +2
no code implementations • 5 Nov 2020 • Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren, Hang Su, Thong Le, Ching-Feng Yeh, Christian Fuegen, Michael L. Seltzer
There is a growing interest in the speech community in developing Recurrent Neural Network Transducer (RNN-T) models for automatic speech recognition (ASR) applications.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +2
no code implementations • 3 Nov 2020 • Ching-Feng Yeh, Yongqiang Wang, Yangyang Shi, Chunyang Wu, Frank Zhang, Julian Chan, Michael L. Seltzer
Attention-based models have been gaining popularity recently for their strong performance demonstrated in fields such as machine translation and automatic speech recognition.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +3
no code implementations • 27 Oct 2020 • Yongqiang Wang, Yangyang Shi, Frank Zhang, Chunyang Wu, Julian Chan, Ching-Feng Yeh, Alex Xiao
We compare the transformer based acoustic models with their LSTM counterparts on industrial scale tasks.
1 code implementation • 21 Oct 2020 • Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng Yeh, Julian Chan, Frank Zhang, Duc Le, Mike Seltzer
For a low latency scenario with an average latency of 80 ms, Emformer achieves WER $3. 01\%$ on test-clean and $7. 09\%$ on test-other.
no code implementations • 18 May 2020 • Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer
Transformers, originally proposed for natural language processing (NLP) tasks, have recently achieved great success in automatic speech recognition (ASR).
Automatic Speech Recognition Automatic Speech Recognition (ASR) +1
no code implementations • 16 May 2020 • Chunyang Wu, Yongqiang Wang, Yangyang Shi, Ching-Feng Yeh, Frank Zhang
The memory bankstores the embedding information for all the processed seg-ments.
no code implementations • 27 Nov 2019 • Yi-Chen Chen, Zhaojun Yang, Ching-Feng Yeh, Mahaveer Jain, Michael L. Seltzer
As one of the major sources in speech variability, accents have posed a grand challenge to the robustness of speech recognition systems.
no code implementations • 5 Nov 2019 • Mahaveer Jain, Kjell Schubert, Jay Mahadeokar, Ching-Feng Yeh, Kaustubh Kalgaonkar, Anuroop Sriram, Christian Fuegen, Michael L. Seltzer
Neural transducer-based systems such as RNN Transducers (RNN-T) for automatic speech recognition (ASR) blend the individual components of a traditional hybrid ASR systems (acoustic model, language model, punctuation model, inverse text normalization) into one single model.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +3
1 code implementation • 28 Oct 2019 • Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, Yongqiang Wang, Duc Le, Mahaveer Jain, Kjell Schubert, Christian Fuegen, Michael L. Seltzer
We explore options to use Transformer networks in neural transducer for end-to-end speech recognition.
no code implementations • 7 Jun 2018 • Sining Sun, Ching-Feng Yeh, Mei-Yuh Hwang, Mari Ostendorf, Lei Xie
In this paper, we propose a domain adversarial training (DAT) algorithm to alleviate the accented speech recognition problem.
no code implementations • 7 Jun 2018 • Sining Sun, Ching-Feng Yeh, Mari Ostendorf, Mei-Yuh Hwang, Lei Xie
This paper explores the use of adversarial examples in training speech recognition systems to increase robustness of deep neural network acoustic models.