Search Results for author: Chris R. Sims

Found 2 papers, 0 papers with code

Consolidation via Policy Information Regularization in Deep RL for Multi-Agent Games

no code implementations23 Nov 2020 Tyler Malloy, Tim Klinger, Miao Liu, Matthew Riemer, Gerald Tesauro, Chris R. Sims

This paper introduces an information-theoretic constraint on learned policy complexity in the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) reinforcement learning algorithm.

Continual Learning Continuous Control

Deep RL With Information Constrained Policies: Generalization in Continuous Control

no code implementations9 Oct 2020 Tyler Malloy, Chris R. Sims, Tim Klinger, Miao Liu, Matthew Riemer, Gerald Tesauro

We focus on the model-free reinforcement learning (RL) setting and formalize our approach in terms of an information-theoretic constraint on the complexity of learned policies.

Continuous Control

Cannot find the paper you are looking for? You can Submit a new open access paper.