no code implementations • 7 Dec 2022 • Siddhant Ranade, Christoph Lassner, Kai Li, Christian Haene, Shen-Chi Chen, Jean-Charles Bazin, Sofien Bouaziz
Neural Radiance Fields (NeRFs) encode the radiance in a scene parameterized by the scene's plenoptic function.
no code implementations • ICCV 2021 • Zhang Chen, yinda zhang, Kyle Genova, Sean Fanello, Sofien Bouaziz, Christian Haene, Ruofei Du, Cem Keskin, Thomas Funkhouser, Danhang Tang
To the best of our knowledge, MDIF is the first deep implicit function model that can at the same time (1) represent different levels of detail and allow progressive decoding; (2) support both encoder-decoder inference and decoder-only latent optimization, and fulfill multiple applications; (3) perform detailed decoder-only shape completion.
no code implementations • CVPR 2020 • Danhang Tang, Saurabh Singh, Philip A. Chou, Christian Haene, Mingsong Dou, Sean Fanello, Jonathan Taylor, Philip Davidson, Onur G. Guleryuz, yinda zhang, Shahram Izadi, Andrea Tagliasacchi, Sofien Bouaziz, Cem Keskin
We describe a novel approach for compressing truncated signed distance fields (TSDF) stored in 3D voxel grids, and their corresponding textures.
no code implementations • 10 Feb 2020 • Hossam Isack, Christian Haene, Cem Keskin, Sofien Bouaziz, Yuri Boykov, Shahram Izadi, Sameh Khamis
At the coarsest resolution, and in a manner similar to classical part-based approaches, we leverage the kinematic structure of the human body to propagate convolutional feature updates between the keypoints or body parts.
no code implementations • CVPR 2015 • Nikolay Savinov, Lubor Ladicky, Christian Haene, Marc Pollefeys
The depth and semantic information is incorporated as a unary potential, smoothed by a pairwise regularizer.
no code implementations • CVPR 2019 • Zhe Cao, Abhishek Kar, Christian Haene, Jitendra Malik
Unlike prior learning based work which has focused on predicting dense pixel-wise optical flow field and/or a depth map for each image, we propose to predict object instance specific 3D scene flow maps and instance masks from which we are able to derive the motion direction and speed for each object instance.
1 code implementation • 17 Oct 2017 • Li Yi, Lin Shao, Manolis Savva, Haibin Huang, Yang Zhou, Qirui Wang, Benjamin Graham, Martin Engelcke, Roman Klokov, Victor Lempitsky, Yuan Gan, Pengyu Wang, Kun Liu, Fenggen Yu, Panpan Shui, Bingyang Hu, Yan Zhang, Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Minki Jeong, Jaehoon Choi, Changick Kim, Angom Geetchandra, Narasimha Murthy, Bhargava Ramu, Bharadwaj Manda, M. Ramanathan, Gautam Kumar, P Preetham, Siddharth Srivastava, Swati Bhugra, Brejesh lall, Christian Haene, Shubham Tulsiani, Jitendra Malik, Jared Lafer, Ramsey Jones, Siyuan Li, Jie Lu, Shi Jin, Jingyi Yu, Qi-Xing Huang, Evangelos Kalogerakis, Silvio Savarese, Pat Hanrahan, Thomas Funkhouser, Hao Su, Leonidas Guibas
We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database.
1 code implementation • CVPR 2016 • Nikolay Savinov, Christian Haene, Lubor Ladicky, Marc Pollefeys
We propose an approach for dense semantic 3D reconstruction which uses a data term that is defined as potentials over viewing rays, combined with continuous surface area penalization.