no code implementations • 3 Jun 2024 • Franz Motzkus, Christian Hellert, Ute Schmid
The counterfactuals comprise an increased granularity through minimal feature changes.
no code implementations • 27 May 2024 • Franz Motzkus, Georgii Mikriukov, Christian Hellert, Ute Schmid
While global concept encodings generally enable a user to test a model for a specific concept, linking global concept encodings to the local processing of single network inputs reveals their strengths and limitations.
Explainable artificial intelligence Explainable Artificial Intelligence (XAI)
no code implementations • 24 Nov 2023 • Georgii Mikriukov, Gesina Schwalbe, Christian Hellert, Korinna Bade
The latter, though, is of particular interest for debugging, like finding and understanding outliers, learned notions of sub-concepts, and concept confusion.
Explainable artificial intelligence Explainable Artificial Intelligence (XAI)
no code implementations • 30 Apr 2023 • Georgii Mikriukov, Gesina Schwalbe, Christian Hellert, Korinna Bade
These allow insights into both the flow and likeness of semantic information within CNN layers, and into the degree of their similarity between different network architectures.
Explainable artificial intelligence Explainable Artificial Intelligence (XAI) +1
no code implementations • 28 Apr 2023 • Georgii Mikriukov, Gesina Schwalbe, Christian Hellert, Korinna Bade
The guiding use-case is a post-hoc explainability framework for object detection (OD) CNNs, towards which existing concept analysis (CA) methods are successfully adapted.
Dimensionality Reduction Explainable artificial intelligence +4
no code implementations • 10 May 2022 • Julian Wörmann, Daniel Bogdoll, Christian Brunner, Etienne Bührle, Han Chen, Evaristus Fuh Chuo, Kostadin Cvejoski, Ludger van Elst, Philip Gottschall, Stefan Griesche, Christian Hellert, Christian Hesels, Sebastian Houben, Tim Joseph, Niklas Keil, Johann Kelsch, Mert Keser, Hendrik Königshof, Erwin Kraft, Leonie Kreuser, Kevin Krone, Tobias Latka, Denny Mattern, Stefan Matthes, Franz Motzkus, Mohsin Munir, Moritz Nekolla, Adrian Paschke, Stefan Pilar von Pilchau, Maximilian Alexander Pintz, Tianming Qiu, Faraz Qureishi, Syed Tahseen Raza Rizvi, Jörg Reichardt, Laura von Rueden, Alexander Sagel, Diogo Sasdelli, Tobias Scholl, Gerhard Schunk, Gesina Schwalbe, Hao Shen, Youssef Shoeb, Hendrik Stapelbroek, Vera Stehr, Gurucharan Srinivas, Anh Tuan Tran, Abhishek Vivekanandan, Ya Wang, Florian Wasserrab, Tino Werner, Christian Wirth, Stefan Zwicklbauer
The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models.
no code implementations • 6 Jan 2021 • Yao Rong, Chao Han, Christian Hellert, Antje Loyal, Enkelejda Kasneci
As interest in autonomous driving increases, efforts are being made to meet requirements for the high-level automation of vehicles.