no code implementations • 13 Feb 2023 • Christian Pehle, Luca Blessing, Elias Arnold, Eric Müller, Johannes Schemmel
Building on this work has the potential to enable scalable gradient estimation in large-scale neuromorphic hardware as a continuous measurement of the system state would be prohibitive and energy-inefficient in such instances.
no code implementations • 23 Dec 2022 • Philipp Spilger, Elias Arnold, Luca Blessing, Christian Mauch, Christian Pehle, Eric Müller, Johannes Schemmel
Neuromorphic systems require user-friendly software to support the design and optimization of experiments.
no code implementations • 21 Mar 2022 • Eric Müller, Elias Arnold, Oliver Breitwieser, Milena Czierlinski, Arne Emmel, Jakob Kaiser, Christian Mauch, Sebastian Schmitt, Philipp Spilger, Raphael Stock, Yannik Stradmann, Johannes Weis, Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer, Falk Ebert, Julian Göltz, Joscha Ilmberger, Vitali Karasenko, Mitja Kleider, Aron Leibfried, Christian Pehle, Johannes Schemmel
Neuromorphic systems open up opportunities to enlarge the explorative space for computational research.
no code implementations • 26 Jan 2022 • Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, Johannes Schemmel
Since the beginning of information processing by electronic components, the nervous system has served as a metaphor for the organization of computational primitives.
no code implementations • 17 Sep 2020 • Timo C. Wunderlich, Christian Pehle
Spiking neural networks combine analog computation with event-based communication using discrete spikes.
no code implementations • 23 Jun 2020 • Philipp Spilger, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch, Christian Pehle, Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Sebastian Schmitt, Timo C. Wunderlich, Yannik Stradmann, Johannes Schemmel
We present software facilitating the usage of the BrainScaleS-2 analog neuromorphic hardware system as an inference accelerator for artificial neural networks.
no code implementations • 12 Jun 2020 • Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Johannes Schemmel, Friedemann Zenke
To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum but communicate with spikes, binary events in time.
no code implementations • 30 Dec 2019 • Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, Andreas Baumbach, Dominik Dold, Julian Göltz, Akos F. Kungl, Timo C. Wunderlich, Andreas Hartel, Eric Müller, Oliver Breitwieser, Christian Mauch, Mitja Kleider, Andreas Grübl, David Stöckel, Christian Pehle, Arthur Heimbrecht, Philipp Spilger, Gerd Kiene, Vitali Karasenko, Walter Senn, Mihai A. Petrovici, Johannes Schemmel, Karlheinz Meier
We present first experimental results on the novel BrainScaleS-2 neuromorphic architecture based on an analog neuro-synaptic core and augmented by embedded microprocessors for complex plasticity and experiment control.
no code implementations • 15 Mar 2019 • Thomas Bohnstingl, Franz Scherr, Christian Pehle, Karlheinz Meier, Wolfgang Maass
In contrast, the hyperparameters and learning algorithms of networks of neurons in the brain, which they aim to emulate, have been optimized through extensive evolutionary and developmental processes for specific ranges of computing and learning tasks.
no code implementations • 8 Nov 2018 • Timo Wunderlich, Akos F. Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann, Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David Stöckel, Christian Pehle, Sebastian Billaudelle, Gerd Kiene, Christian Mauch, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici
Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency.