no code implementations • 15 Jan 2025 • Benoit Brummer, Christophe De Vleeschouwer
This paper introduces the Raw Natural Image Noise Dataset (RawNIND), a diverse collection of paired raw images designed to support the development of denoising models that generalize across sensors, image development workflows, and styles.
1 code implementation • 8 Jan 2025 • Clément Fuchs, Maxime Zanella, Christophe De Vleeschouwer
We demonstrate that OGA outperforms state-of-the-art methods on most datasets and runs.
1 code implementation • 7 Jan 2025 • Maxime Zanella, Clément Fuchs, Christophe De Vleeschouwer, Ismail Ben Ayed
Our work challenges these favorable deployment scenarios, and introduces a more realistic evaluation framework, including: (i) a variable number of effective classes for adaptation within a single batch, and (ii) non-i. i. d.
1 code implementation • 16 Sep 2024 • Anthony Cioppa, Silvio Giancola, Vladimir Somers, Victor Joos, Floriane Magera, Jan Held, Seyed Abolfazl Ghasemzadeh, Xin Zhou, Karolina Seweryn, Mateusz Kowalczyk, Zuzanna Mróz, Szymon Łukasik, Michał Hałoń, Hassan Mkhallati, Adrien Deliège, Carlos Hinojosa, Karen Sanchez, Amir M. Mansourian, Pierre Miralles, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Adam Gorski, Albert Clapés, Andrei Boiarov, Anton Afanasiev, Artur Xarles, Atom Scott, Byoungkwon Lim, Calvin Yeung, Cristian Gonzalez, Dominic Rüfenacht, Enzo Pacilio, Fabian Deuser, Faisal Sami Altawijri, Francisco Cachón, Hankyul Kim, Haobo Wang, Hyeonmin Choe, Hyunwoo J Kim, Il-Min Kim, Jae-Mo Kang, Jamshid Tursunboev, Jian Yang, Jihwan Hong, JiMin Lee, Jing Zhang, Junseok Lee, Kexin Zhang, Konrad Habel, Licheng Jiao, Linyi Li, Marc Gutiérrez-Pérez, Marcelo Ortega, Menglong Li, Milosz Lopatto, Nikita Kasatkin, Nikolay Nemtsev, Norbert Oswald, Oleg Udin, Pavel Kononov, Pei Geng, Saad Ghazai Alotaibi, Sehyung Kim, Sergei Ulasen, Sergio Escalera, Shanshan Zhang, Shuyuan Yang, Sunghwan Moon, Thomas B. Moeslund, Vasyl Shandyba, Vladimir Golovkin, Wei Dai, WonTaek Chung, Xinyu Liu, Yongqiang Zhu, Youngseo Kim, Yuan Li, Yuting Yang, Yuxuan Xiao, Zehua Cheng, Zhihao LI
The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team.
1 code implementation • 1 Sep 2024 • Karim El Khoury, Maxime Zanella, Benoît Gérin, Tiffanie Godelaine, Benoît Macq, Saïd Mahmoudi, Christophe De Vleeschouwer, Ismail Ben Ayed
Vision-Language Models for remote sensing have shown promising uses thanks to their extensive pretraining.
Ranked #1 on Transductive Zero-Shot Classification on WHURS19
1 code implementation • 20 Aug 2024 • Seyed Abolfazl Ghasemzadeh, Alexandre Alahi, Christophe De Vleeschouwer
Estimating 3D human poses from 2D images is challenging due to occlusions and projective acquisition.
no code implementations • 10 Aug 2024 • Mathieu Cyrille Simon, Pascal Frossard, Christophe De Vleeschouwer
This paper explores self-supervised disentangled representation learning within sequential data, focusing on separating time-independent and time-varying factors in videos.
2 code implementations • 25 Jul 2024 • Vladimir Somers, Christophe De Vleeschouwer, Alexandre Alahi
Inspired by recent work on prompting in vision, we introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints indicating the intended target.
Ranked #1 on Person Re-Identification on Occluded-DukeMTMC
no code implementations • 15 Jul 2024 • Antoine Legrand, Renaud Detry, Christophe De Vleeschouwer
This work introduces a novel augmentation method that increases the diversity of a train set to improve the generalization abilities of a 6D pose estimation network.
no code implementations • 17 Jun 2024 • Antoine Legrand, Renaud Detry, Christophe De Vleeschouwer
We address the problem of estimating the relative 6D pose, i. e., position and orientation, of a target spacecraft, from a monocular image, a key capability for future autonomous Rendezvous and Proximity Operations.
no code implementations • 21 May 2024 • Antoine Legrand, Renaud Detry, Christophe De Vleeschouwer
We train the NeRF model using a sparse collection of images that depict the target, and in turn generate a large dataset that is diverse both in terms of viewpoint and illumination.
2 code implementations • 14 May 2024 • Alexandre Englebert, Anne-Sophie Collin, Olivier Cornu, Christophe De Vleeschouwer
This paper proposes leveraging vision-language pretraining on bone X-rays paired with French reports to address downstream tasks of interest on bone radiography.
no code implementations • 29 Apr 2024 • Antoine Maiorca, Seyed Abolfazl Ghasemzadeh, Thierry Ravet, François Cresson, Thierry Dutoit, Christophe De Vleeschouwer
Nevertheless, the limitations of these systems are multiples: the desynchronization between the two motion sources and occlusions are examples of significant issues that hinder the implementations of such systems.
2 code implementations • 27 Apr 2024 • Benoît Gérin, Anaïs Halin, Anthony Cioppa, Maxim Henry, Bernard Ghanem, Benoît Macq, Christophe De Vleeschouwer, Marc Van Droogenbroeck
In the era of the Internet of Things (IoT), objects connect through a dynamic network, empowered by technologies like 5G, enabling real-time data sharing.
2 code implementations • 17 Apr 2024 • Vladimir Somers, Victor Joos, Anthony Cioppa, Silvio Giancola, Seyed Abolfazl Ghasemzadeh, Floriane Magera, Baptiste Standaert, Amir Mohammad Mansourian, Xin Zhou, Shohreh Kasaei, Bernard Ghanem, Alexandre Alahi, Marc Van Droogenbroeck, Christophe De Vleeschouwer
This tracking and identification process is crucial for reconstructing the game state, defined by the athletes' positions and identities on a 2D top-view of the pitch, (i. e. a minimap).
Ranked #1 on Game State Reconstruction on SoccerNet-GSR
1 code implementation • 16 Apr 2024 • Dani Manjah, Davide Cacciarelli, Christophe De Vleeschouwer, Benoit Macq
We present a scalable framework designed to craft efficient lightweight models for video object detection utilizing self-training and knowledge distillation techniques.
no code implementations • 18 Jan 2024 • Amir M. Mansourian, Vladimir Somers, Christophe De Vleeschouwer, Shohreh Kasaei
To demonstrate the effectiveness of PRTreID, it is integrated with a state-of-the-art tracking method, using a part-based post-processing module to handle long-term tracking.
2 code implementations • 12 Sep 2023 • Anthony Cioppa, Silvio Giancola, Vladimir Somers, Floriane Magera, Xin Zhou, Hassan Mkhallati, Adrien Deliège, Jan Held, Carlos Hinojosa, Amir M. Mansourian, Pierre Miralles, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Abdullah Kamal, Adrien Maglo, Albert Clapés, Amr Abdelaziz, Artur Xarles, Astrid Orcesi, Atom Scott, Bin Liu, Byoungkwon Lim, Chen Chen, Fabian Deuser, Feng Yan, Fufu Yu, Gal Shitrit, Guanshuo Wang, Gyusik Choi, Hankyul Kim, Hao Guo, Hasby Fahrudin, Hidenari Koguchi, Håkan Ardö, Ibrahim Salah, Ido Yerushalmy, Iftikar Muhammad, Ikuma Uchida, Ishay Be'ery, Jaonary Rabarisoa, Jeongae Lee, Jiajun Fu, Jianqin Yin, Jinghang Xu, Jongho Nang, Julien Denize, Junjie Li, Junpei Zhang, Juntae Kim, Kamil Synowiec, Kenji Kobayashi, Kexin Zhang, Konrad Habel, Kota Nakajima, Licheng Jiao, Lin Ma, Lizhi Wang, Luping Wang, Menglong Li, Mengying Zhou, Mohamed Nasr, Mohamed Abdelwahed, Mykola Liashuha, Nikolay Falaleev, Norbert Oswald, Qiong Jia, Quoc-Cuong Pham, Ran Song, Romain Hérault, Rui Peng, Ruilong Chen, Ruixuan Liu, Ruslan Baikulov, Ryuto Fukushima, Sergio Escalera, Seungcheon Lee, Shimin Chen, Shouhong Ding, Taiga Someya, Thomas B. Moeslund, Tianjiao Li, Wei Shen, Wei zhang, Wei Li, Wei Dai, Weixin Luo, Wending Zhao, Wenjie Zhang, Xinquan Yang, Yanbiao Ma, Yeeun Joo, Yingsen Zeng, Yiyang Gan, Yongqiang Zhu, Yujie Zhong, Zheng Ruan, Zhiheng Li, Zhijian Huang, Ziyu Meng
More information on the tasks, challenges, and leaderboards are available on https://www. soccer-net. org.
1 code implementation • 7 Sep 2023 • Marcello Davide Caio, Gabriel Van Zandycke, Christophe De Vleeschouwer
Accurately localizing objects in three dimensions (3D) is crucial for various computer vision applications, such as robotics, autonomous driving, and augmented reality.
1 code implementation • 12 Jul 2023 • Benoit Brummer, Christophe De Vleeschouwer
Image noise is ubiquitous in photography.
1 code implementation • 25 May 2023 • Sédrick Stassin, Alexandre Englebert, Géraldin Nanfack, Julien Albert, Nassim Versbraegen, Gilles Peiffer, Miriam Doh, Nicolas Riche, Benoît Frenay, Christophe De Vleeschouwer
EXplainable Artificial Intelligence (XAI) aims to help users to grasp the reasoning behind the predictions of an Artificial Intelligence (AI) system.
Explainable artificial intelligence Explainable Artificial Intelligence (XAI)
1 code implementation • 2 Dec 2022 • Antoine Vanderschueren, Christophe De Vleeschouwer
Turning the weights to zero when training a neural network helps in reducing the computational complexity at inference.
no code implementations • 24 Nov 2022 • Benjamin Kiefer, Matej Kristan, Janez Perš, Lojze Žust, Fabio Poiesi, Fabio Augusto de Alcantara Andrade, Alexandre Bernardino, Matthew Dawkins, Jenni Raitoharju, Yitong Quan, Adem Atmaca, Timon Höfer, Qiming Zhang, Yufei Xu, Jing Zhang, DaCheng Tao, Lars Sommer, Raphael Spraul, Hangyue Zhao, Hongpu Zhang, Yanyun Zhao, Jan Lukas Augustin, Eui-ik Jeon, Impyeong Lee, Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, Sagar Verma, Siddharth Gupta, Shishir Muralidhara, Niharika Hegde, Daitao Xing, Nikolaos Evangeliou, Anthony Tzes, Vojtěch Bartl, Jakub Špaňhel, Adam Herout, Neelanjan Bhowmik, Toby P. Breckon, Shivanand Kundargi, Tejas Anvekar, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudengudi, Arpita Vats, Yang song, Delong Liu, Yonglin Li, Shuman Li, Chenhao Tan, Long Lan, Vladimir Somers, Christophe De Vleeschouwer, Alexandre Alahi, Hsiang-Wei Huang, Cheng-Yen Yang, Jenq-Neng Hwang, Pyong-Kun Kim, Kwangju Kim, Kyoungoh Lee, Shuai Jiang, Haiwen Li, Zheng Ziqiang, Tuan-Anh Vu, Hai Nguyen-Truong, Sai-Kit Yeung, Zhuang Jia, Sophia Yang, Chih-Chung Hsu, Xiu-Yu Hou, Yu-An Jhang, Simon Yang, Mau-Tsuen Yang
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection.
3 code implementations • 7 Nov 2022 • Vladimir Somers, Christophe De Vleeschouwer, Alexandre Alahi
Firstly, individual body part appearance is not as discriminative as global appearance (two distinct IDs might have the same local appearance), this means standard ReID training objectives using identity labels are not adapted to local feature learning.
Ranked #1 on Person Re-Identification on P-DukeMTMC-reID
7 code implementations • 5 Oct 2022 • Silvio Giancola, Anthony Cioppa, Adrien Deliège, Floriane Magera, Vladimir Somers, Le Kang, Xin Zhou, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Abdulrahman Darwish, Adrien Maglo, Albert Clapés, Andreas Luyts, Andrei Boiarov, Artur Xarles, Astrid Orcesi, Avijit Shah, Baoyu Fan, Bharath Comandur, Chen Chen, Chen Zhang, Chen Zhao, Chengzhi Lin, Cheuk-Yiu Chan, Chun Chuen Hui, Dengjie Li, Fan Yang, Fan Liang, Fang Da, Feng Yan, Fufu Yu, Guanshuo Wang, H. Anthony Chan, He Zhu, Hongwei Kan, Jiaming Chu, Jianming Hu, Jianyang Gu, Jin Chen, João V. B. Soares, Jonas Theiner, Jorge De Corte, José Henrique Brito, Jun Zhang, Junjie Li, Junwei Liang, Leqi Shen, Lin Ma, Lingchi Chen, Miguel Santos Marques, Mike Azatov, Nikita Kasatkin, Ning Wang, Qiong Jia, Quoc Cuong Pham, Ralph Ewerth, Ran Song, RenGang Li, Rikke Gade, Ruben Debien, Runze Zhang, Sangrok Lee, Sergio Escalera, Shan Jiang, Shigeyuki Odashima, Shimin Chen, Shoichi Masui, Shouhong Ding, Sin-wai Chan, Siyu Chen, Tallal El-Shabrawy, Tao He, Thomas B. Moeslund, Wan-Chi Siu, Wei zhang, Wei Li, Xiangwei Wang, Xiao Tan, Xiaochuan Li, Xiaolin Wei, Xiaoqing Ye, Xing Liu, Xinying Wang, Yandong Guo, YaQian Zhao, Yi Yu, YingYing Li, Yue He, Yujie Zhong, Zhenhua Guo, Zhiheng Li
The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team.
no code implementations • 11 Jul 2022 • Antoine Legrand, Benoît Macq, Christophe De Vleeschouwer
JPEG-XS offers low complexity image compression for applications with constrained but reasonable bit-rate, and low latency.
no code implementations • 23 May 2022 • Niels Sayez, Christophe De Vleeschouwer
Various strategies are then investigated to balance the human manual annotation resources between bounding-box definition and mask correction, including when the correction of instance masks is prioritized based on their overlap with other instance bounding-boxes, or the outcome of an instance segmentation model trained on a partially annotated dataset.
1 code implementation • 28 Apr 2022 • Alexandre Englebert, Olivier Cornu, Christophe De Vleeschouwer
The need for Explainable AI is increasing with the development of deep learning.
2 code implementations • 30 Mar 2022 • Gabriel Van Zandycke, Christophe De Vleeschouwer
In this work, we propose to address the task on a single image from a calibrated monocular camera by estimating ball diameter in pixels and use the knowledge of real ball diameter in meters.
1 code implementation • 1 Dec 2021 • Seyed Abolfazl Ghasemzadeh, Gabriel Van Zandycke, Maxime Istasse, Niels Sayez, Amirafshar Moshtaghpour, Christophe De Vleeschouwer
In addition to the increased complexity resulting from the multiplication of single-task models, the use of the off-the-shelf models also impedes the performance due to the complexity and specificity of the team sports scenes, such as strong occlusion and motion blur.
1 code implementation • 17 Nov 2021 • Benoit Brummer, Christophe De Vleeschouwer
Convolutional autoencoders are now at the forefront of image compression research.
no code implementations • 29 Sep 2021 • Antoine Vanderschueren, Christophe De Vleeschouwer
This paper proposes a new and simple way of training sparse neural networks.
1 code implementation • 3 Sep 2021 • Adrien Deliège, Maxime Istasse, Ashwani Kumar, Christophe De Vleeschouwer, Marc Van Droogenbroeck
More importantly, they also demonstrate that ordinal pooling leads to consistent improvements in the accuracy over average- or max-pooling operations while speeding up the training and alleviating the issue of the choice of the pooling operations and activation functions to be used in the networks.
1 code implementation • ICLR Workshop Rethinking_ML_Papers 2021 • Maxime Istasse, Kim Mens, Christophe De Vleeschouwer
But this is not the case for output mathematics.
1 code implementation • ICLR 2021 • Carbonnelle Simon, Christophe De Vleeschouwer
Several works have shown that the regularization mechanisms underlying deep neural networks' generalization performances are still poorly understood.
1 code implementation • 29 Aug 2020 • Anne-Sophie Collin, Christophe De Vleeschouwer
In industrial vision, the anomaly detection problem can be addressed with an autoencoder trained to map an arbitrary image, i. e. with or without any defect, to a clean image, i. e. without any defect.
no code implementations • 27 Aug 2020 • Antoine Vanderschueren, Victor Joos, Christophe De Vleeschouwer
We propose a novel approach to localize a 3D object from the intensity and depth information images provided by a Time-of-Flight (ToF) sensor.
2 code implementations • 23 Jul 2020 • Gabriel Van Zandycke, Christophe De Vleeschouwer
This paper considers the task of detecting the ball from a single viewpoint in the challenging but common case where the ball interacts frequently with players while being poorly contrasted with respect to the background.
Ranked #6 on Sports Ball Detection and Tracking on Badminton
no code implementations • 18 May 2020 • Benoit Brummer, Christophe De Vleeschouwer
Most current research in the domain of image compression focuses solely on achieving state of the art compression ratio, but that is not always usable in today's workflow due to the constraints on computing resources.
no code implementations • 1 Jul 2019 • Maxime Istasse, Julien Moreau, Christophe De Vleeschouwer
Assigning team labels to players in a sport game is not a trivial task when no prior is known about the visual appearance of each team.
3 code implementations • 1 Jun 2019 • Benoit Brummer, Christophe De Vleeschouwer
We introduce the Natural Image Noise Dataset (NIND), a dataset of DSLR-like images with varying levels of ISO noise which is large enough to train models for blind denoising over a wide range of noise.
1 code implementation • ICML Workshop Deep_Phenomen 2019 • Simon Carbonnelle, Christophe De Vleeschouwer
Our work presents empirical evidence that layer rotation, i. e. the evolution across training of the cosine distance between each layer's weight vector and its initialization, constitutes an impressively consistent indicator of generalization performance.
no code implementations • 27 Sep 2018 • Simon Carbonnelle, Christophe De Vleeschouwer
How optimization influences the generalization ability of a DNN is still an active area of research.
2 code implementations • 5 Jun 2018 • Simon Carbonnelle, Christophe De Vleeschouwer
Our work presents extensive empirical evidence that layer rotation, i. e. the evolution across training of the cosine distance between each layer's weight vector and its initialization, constitutes an impressively consistent indicator of generalization performance.
2 code implementations • 13 Apr 2018 • Codruta O. Ancuti, Cosmin Ancuti, Radu Timofte, Christophe De Vleeschouwer
This represents an important advantage of the I-HAZE dataset that allows us to objectively compare the existing image dehazing techniques using traditional image quality metrics such as PSNR and SSIM.
1 code implementation • 13 Apr 2018 • Codruta O. Ancuti, Cosmin Ancuti, Radu Timofte, Christophe De Vleeschouwer
Haze removal or dehazing is a challenging ill-posed problem that has drawn a significant attention in the last few years.
no code implementations • ICLR 2018 • Simon Carbonnelle, Christophe De Vleeschouwer
Neural networks trained through stochastic gradient descent (SGD) have been around for more than 30 years, but they still escape our understanding.
no code implementations • CVPR 2016 • Cedric Verleysen, Christophe De Vleeschouwer
This paper approximates the 3D geometry of a scene by a small number of 3D planes.
no code implementations • 17 Feb 2016 • Arnaud Browet, Christophe De Vleeschouwer, Laurent Jacques, Navrita Mathiah, Bechara Saykali, Isabelle Migeotte
To isolate individual cells in live imaging data, we introduce an elegant image segmentation framework that effectively extracts cell boundaries, even in the presence of poor edge details.
no code implementations • 1 Sep 2015 • Amit Kumar K. C., Damien Delannay, Christophe De Vleeschouwer
This paper assumes prior detections of multiple targets at each time instant, and uses a graph-based approach to connect those detections across time, based on their position and appearance estimates.
no code implementations • 5 Apr 2015 • Amit Kumar K. C., Laurent Jacques, Christophe De Vleeschouwer
Given a set of detections, detected at each time instant independently, we investigate how to associate them across time.
no code implementations • 4 Sep 2012 • Adriana Gonzalez, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine
Optical Deflectometric Tomography (ODT) provides an accurate characterization of transparent materials whose complex surfaces present a real challenge for manufacture and control.