no code implementations • 17 Apr 2024 • Pierre Lepagnol, Thomas Gerald, Sahar Ghannay, Christophe Servan, Sophie Rosset
This study is part of the debate on the efficiency of large versus small language models for text classification by prompting. We assess the performance of small language models in zero-shot text classification, challenging the prevailing dominance of large models. Across 15 datasets, our investigation benchmarks language models from 77M to 40B parameters using different architectures and scoring functions.
no code implementations • 28 Mar 2024 • Nesrine Bannour, Christophe Servan, Aurélie Névéol, Xavier Tannier
Objective: This paper presentsan evaluation of masked language models for biomedical French on the task of clinical named entity recognition. Material and methods: We evaluate biomedical models CamemBERT-bio and DrBERT and compare them tostandard French models CamemBERT, FlauBERT and FrALBERT as well as multilingual mBERT using three publicallyavailable corpora for clinical named entity recognition in French.
1 code implementation • 28 Mar 2024 • Nadège Alavoine, Gaëlle Laperriere, Christophe Servan, Sahar Ghannay, Sophie Rosset
A combination ofmultiple datasets, including the MEDIA dataset, was suggested for training this joint model.
no code implementations • 27 Mar 2024 • Christophe Servan, Sahar Ghannay, Sophie Rosset
Within the current trend of Pretained Language Models (PLM), emerge more and more criticisms about the ethical andecological impact of such models.
no code implementations • ACL (MetaNLP) 2021 • Oralie Cattan, Christophe Servan, Sophie Rosset
Supervised deep learning-based approaches have been applied to task-oriented dialog and have proven to be effective for limited domain and language applications when a sufficient number of training examples are available.
no code implementations • RANLP 2021 • Oralie Cattan, Christophe Servan, Sophie Rosset
In this paper, we establish a state-of-the-art of the efforts dedicated to the usability of Transformer-based models and propose to evaluate these improvements on the question-answering performances of French language which have few resources.
no code implementations • 19 Jul 2022 • Oralie Cattan, Sahar Ghannay, Christophe Servan, Sophie Rosset
In this paper, we propose a unified benchmark, focused on evaluating models quality and their ecological impact on two well-known French spoken language understanding tasks.
1 code implementation • COLING 2020 • Sahar Ghannay, Christophe Servan, Sophie Rosset
In this paper, we present a study on a French Spoken Language Understanding (SLU) task: the MEDIA task.
no code implementations • JEPTALNRECITAL 2020 • Estelle Maudet, Christophe Servan
Cet article pr{\'e}sente notre {\'e}tude pour proposer un nouveau syst{\`e}me de d{\'e}tection d{'}intention pour le moteur de recherche sur Internet Qwant.
no code implementations • EMNLP (IWSLT) 2019 • Valentin Macé, Christophe Servan
In Machine Translation, considering the document as a whole can help to resolve ambiguities and inconsistencies.
no code implementations • 6 Jul 2019 • Estelle Maudet, Oralie Cattan, Maureen de Seyssel, Christophe Servan
For this task, we propose an approach based on language models and evaluate the impact on the results of different preprocessings and matching techniques.
no code implementations • JEPTALNRECITAL 2019 • Estelle Maudet, Oralie Cattan, Maureen de Seyssel, Christophe Servan
Pour r{\'e}soudre cette t{\^a}che, nous proposons une approche reposant sur des mod{\`e}les de langue et {\'e}valuons l{'}impact de diff{\'e}rents pr{\'e}-traitements et de diff{\'e}rentes techniques d{'}appariement sur les r{\'e}sultats.
no code implementations • 27 Mar 2019 • Maxime Portaz, Hicham Randrianarivo, Adrien Nivaggioli, Estelle Maudet, Christophe Servan, Sylvain Peyronnet
Moreover, by using multilingual embeddings we ensure that words from two different languages have close descriptors and thus are attached to similar images.
no code implementations • WS 2017 • Yongchao Deng, Jungi Kim, Guillaume Klein, Catherine Kobus, Natalia Segal, Christophe Servan, Bo wang, Dakun Zhang, Josep Crego, Jean Senellart
This paper describes SYSTRAN's systems submitted to the WMT 2017 shared news translation task for English-German, in both translation directions.
no code implementations • JEPTALNRECITAL 2017 • Christophe Servan, Catherine Kobus, Yongchao Deng, Cyril Touffet, Jungi Kim, In{\`e}s Kapp, Djamel Mostefa, Josep Crego, Aur{\'e}lien Coquard, Jean Senellart
Cet article pr{\'e}sente un syst{\`e}me d{'}alertes fond{\'e} sur la masse de donn{\'e}es issues de Tweeter.
no code implementations • JEPTALNRECITAL 2017 • Christophe Servan, Josep Crego, Jean Senellart
L{'}adaptation au domaine est un verrou scientifique en traduction automatique.
no code implementations • 19 Dec 2016 • Christophe Servan, Josep Crego, Jean Senellart
Domain adaptation is a key feature in Machine Translation.
1 code implementation • 6 Dec 2016 • Alexandre Berard, Olivier Pietquin, Christophe Servan, Laurent Besacier
This paper proposes a first attempt to build an end-to-end speech-to-text translation system, which does not use source language transcription during learning or decoding.
no code implementations • 18 Oct 2016 • Josep Crego, Jungi Kim, Guillaume Klein, Anabel Rebollo, Kathy Yang, Jean Senellart, Egor Akhanov, Patrice Brunelle, Aurelien Coquard, Yongchao Deng, Satoshi Enoue, Chiyo Geiss, Joshua Johanson, Ardas Khalsa, Raoum Khiari, Byeongil Ko, Catherine Kobus, Jean Lorieux, Leidiana Martins, Dang-Chuan Nguyen, Alexandra Priori, Thomas Riccardi, Natalia Segal, Christophe Servan, Cyril Tiquet, Bo wang, Jin Yang, Dakun Zhang, Jing Zhou, Peter Zoldan
Since the first online demonstration of Neural Machine Translation (NMT) by LISA, NMT development has recently moved from laboratory to production systems as demonstrated by several entities announcing roll-out of NMT engines to replace their existing technologies.
1 code implementation • COLING 2016 • Christophe Servan, Alexandre Berard, Zied Elloumi, Hervé Blanchon, Laurent Besacier
This paper presents an approach combining lexico-semantic resources and distributed representations of words applied to the evaluation in machine translation (MT).
no code implementations • JEPTALNRECITAL 2016 • Christophe Servan, Zied Elloumi, Herv{\'e} Blanchon, Laurent Besacier
Cet article pr{\'e}sente une approche associant r{\'e}seaux lexico-s{\'e}mantiques et repr{\'e}sentations distribu{\'e}es de mots appliqu{\'e}e {\`a} l{'}{\'e}valuation de la traduction automatique.
1 code implementation • LREC 2016 • Alex B{\'e}rard, re, Christophe Servan, Olivier Pietquin, Laurent Besacier
We present MultiVec, a new toolkit for computing continuous representations for text at different granularity levels (word-level or sequences of words).
no code implementations • JEPTALNRECITAL 2015 • Christophe Servan, Marc Dymetman
Nous pr{\'e}sentons des travaux pr{\'e}liminaires sur une approche permettant d{'}ajouter des termes bilingues {\`a} un syst{\`e}me de Traduction Automatique Statistique (TAS) {\`a} base de segments.