no code implementations • 22 Nov 2021 • Thomas Leonard, Samuel Liu, Mahshid Alamdar, Can Cui, Otitoaleke G. Akinola, Lin Xue, T. Patrick Xiao, Joseph S. Friedman, Matthew J. Marinella, Christopher H. Bennett, Jean Anne C. Incorvia
In neuromorphic computing, artificial synapses provide a multi-weight conductance state that is set based on inputs from neurons, analogous to the brain.
no code implementations • 3 Sep 2021 • T. Patrick Xiao, Ben Feinberg, Christopher H. Bennett, Venkatraman Prabhakar, Prashant Saxena, Vineet Agrawal, Sapan Agarwal, Matthew J. Marinella
Specialized accelerators have recently garnered attention as a method to reduce the power consumption of neural network inference.
no code implementations • 5 Jul 2021 • Pranav O. Mathews, Christian B. Duffee, Abel Thayil, Ty E. Stovall, Christopher H. Bennett, Felipe Garcia-Sanchez, Matthew J. Marinella, Jean Anne C. Incorvia, Naimul Hassan, Xuan Hu, Joseph S. Friedman
Neuromorphic computing systems overcome the limitations of traditional von Neumann computing architectures.
no code implementations • 8 Jan 2021 • Samuel Liu, Christopher H. Bennett, Joseph S. Friedman, Matthew J. Marinella, David Paydarfar, Jean Anne C. Incorvia
Neuromorphic computing with spintronic devices has been of interest due to the limitations of CMOS-driven von Neumann computing.
Mesoscale and Nanoscale Physics
no code implementations • 11 Nov 2020 • Wesley H. Brigner, Naimul Hassan, Xuan Hu, Christopher H. Bennett, Felipe Garcia-Sanchez, Can Cui, Alvaro Velasquez, Matthew J. Marinella, Jean Anne C. Incorvia, Joseph S. Friedman
This work proposes modifications to these spintronic neurons that enable configuration of the activation functions through control of the shape of a magnetic domain wall track.
no code implementations • 2 Apr 2020 • Christopher H. Bennett, T. Patrick Xiao, Ryan Dellana, Vineet Agrawal, Ben Feinberg, Venkatraman Prabhakar, Krishnaswamy Ramkumar, Long Hinh, Swatilekha Saha, Vijay Raghavan, Ramesh Chettuvetty, Sapan Agarwal, Matthew J. Marinella
Non-volatile memory arrays can deploy pre-trained neural network models for edge inference.
no code implementations • 24 Mar 2020 • Alvaro Velasquez, Christopher H. Bennett, Naimul Hassan, Wesley H. Brigner, Otitoaleke G. Akinola, Jean Anne C. Incorvia, Matthew J. Marinella, Joseph S. Friedman
We propose a hardware learning rule for unsupervised clustering within a novel spintronic computing architecture.
no code implementations • 4 Mar 2020 • Christopher H. Bennett, T. Patrick Xiao, Can Cui, Naimul Hassan, Otitoaleke G. Akinola, Jean Anne C. Incorvia, Alvaro Velasquez, Joseph S. Friedman, Matthew J. Marinella
Machine learning implements backpropagation via abundant training samples.
no code implementations • 25 Feb 2020 • Christopher H. Bennett, Ryan Dellana, T. Patrick Xiao, Ben Feinberg, Sapan Agarwal, Suma Cardwell, Matthew J. Marinella, William Severa, Brad Aimone
Neuromorphic-style inference only works well if limited hardware resources are maximized properly, e. g. accuracy continues to scale with parameters and complexity in the face of potential disturbance.
no code implementations • 3 Feb 2020 • Wesley H. Brigner, Naimul Hassan, Xuan Hu, Christopher H. Bennett, Felipe Garcia-Sanchez, Matthew J. Marinella, Jean Anne C. Incorvia, Joseph S. Friedman
Neuromorphic computing promises revolutionary improvements over conventional systems for applications that process unstructured information.
no code implementations • 12 Sep 2017 • Christopher H. Bennett, Damien Querlioz, Jacques-Olivier Klein
By translating the database into the time domain and using variable integration windows, up to 95% classification accuracy is achieved.
no code implementations • 27 Jun 2016 • Christopher H. Bennett, Selina La Barbera, Adrien F. Vincent, Fabien Alibart, Damien Querlioz
This approach outperforms a conventional ELM-inspired system when the first layer is imprinted before training and testing, and especially so when variability in device timing evolution is considered: variability is therefore transformed from an issue to a feature.