You need to log in to edit.

You can create a new account if you don't have one.

Or, discuss a change on Slack.

You can create a new account if you don't have one.

Or, discuss a change on Slack.

1 code implementation • 20 May 2022 • Avanika Narayan, Ines Chami, Laurel Orr, Christopher Ré

Foundation Models (FMs) are models trained on large corpora of data that, at very large scale, can generalize to new tasks without any task-specific finetuning.

1 code implementation • Findings (ACL) 2022 • Megan Leszczynski, Daniel Y. Fu, Mayee F. Chen, Christopher Ré

Entity retrieval--retrieving information about entity mentions in a query--is a key step in open-domain tasks, such as question answering or fact checking.

1 code implementation • 15 Apr 2022 • Mayee F. Chen, Daniel Y. Fu, Avanika Narayan, Michael Zhang, Zhao Song, Kayvon Fatahalian, Christopher Ré

We first prove that adding a weighted class-conditional InfoNCE loss to SupCon controls the degree of spread.

1 code implementation • 1 Apr 2022 • Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu, Aniruddh Rao, Atri Rudra, Christopher Ré

To address these issues, we propose a class of matrices (Monarch) that is hardware-efficient (they are parameterized as products of two block-diagonal matrices for better hardware utilization) and expressive (they can represent many commonly used transforms).

no code implementations • 24 Mar 2022 • Mayee F. Chen, Daniel Y. Fu, Dyah Adila, Michael Zhang, Frederic Sala, Kayvon Fatahalian, Christopher Ré

Despite the black-box nature of foundation models, we prove results characterizing how our approach improves performance and show that lift scales with the smoothness of label distributions in embedding space.

1 code implementation • ICLR 2022 • Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher Lee-Messer, Jared Dunnmon, James Zou, Christopher Ré

In this work, we address these challenges by first designing a principled evaluation framework that enables a quantitative comparison of SDMs across 1, 235 slice discovery settings in three input domains (natural images, medical images, and time-series data).

1 code implementation • 14 Mar 2022 • Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré

We first define the PUBLIC-PRIVATE AUTOREGRESSIVE INFORMATION RETRIEVAL (PAIR) privacy framework for the novel retrieval setting over multiple privacy scopes.

1 code implementation • 14 Mar 2022 • Arjun D Desai, Andrew M Schmidt, Elka B Rubin, Christopher M Sandino, Marianne S Black, Valentina Mazzoli, Kathryn J Stevens, Robert Boutin, Christopher Ré, Garry E Gold, Brian A Hargreaves, Akshay S Chaudhari

While recent machine learning methods for MRI reconstruction and analysis have shown promise for reducing this burden, these techniques are primarily validated with imperfect image quality metrics, which are discordant with clinically-relevant measures that ultimately hamper clinical deployment and clinician trust.

no code implementations • 3 Mar 2022 • Michael Zhang, Nimit S. Sohoni, Hongyang R. Zhang, Chelsea Finn, Christopher Ré

As ERM models can be good spurious attribute predictors, CNC works by (1) using a trained ERM model's outputs to identify samples with the same class but dissimilar spurious features, and (2) training a robust model with contrastive learning to learn similar representations for same-class samples.

2 code implementations • 20 Feb 2022 • Karan Goel, Albert Gu, Chris Donahue, Christopher Ré

SaShiMi yields state-of-the-art performance for unconditional waveform generation in the autoregressive setting.

no code implementations • 31 Dec 2021 • Nimit S. Sohoni, Maziar Sanjabi, Nicolas Ballas, Aditya Grover, Shaoliang Nie, Hamed Firooz, Christopher Ré

Theoretically, we provide generalization bounds for our approach in terms of the worst-group performance, which scale with respect to both the total number of training points and the number of training points with group labels.

1 code implementation • ICLR 2022 • Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, Christopher Ré

To address this, our main insight is to optimize over a continuous superset of sparse matrices with a fixed structure known as products of butterfly matrices.

2 code implementations • 8 Nov 2021 • Avanika Narayan, Piero Molino, Karan Goel, Willie Neiswanger, Christopher Ré

LBT provides a configurable interface for controlling training and customizing evaluation, a standardized training framework for eliminating confounding variables, and support for multi-objective evaluation.

1 code implementation • 3 Nov 2021 • Arjun D Desai, Beliz Gunel, Batu M Ozturkler, Harris Beg, Shreyas Vasanawala, Brian A Hargreaves, Christopher Ré, John M Pauly, Akshay S Chaudhari

Deep neural networks have enabled improved image quality and fast inference times for various inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction.

3 code implementations • ICLR 2022 • Albert Gu, Karan Goel, Christopher Ré

A central goal of sequence modeling is designing a single principled model that can address sequence data across a range of modalities and tasks, particularly on long-range dependencies.

1 code implementation • NeurIPS 2021 • Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, Christopher Ré

Recent advances in efficient Transformers have exploited either the sparsity or low-rank properties of attention matrices to reduce the computational and memory bottlenecks of modeling long sequences.

2 code implementations • NeurIPS 2021 • Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, Christopher Ré

Recurrent neural networks (RNNs), temporal convolutions, and neural differential equations (NDEs) are popular families of deep learning models for time-series data, each with unique strengths and tradeoffs in modeling power and computational efficiency.

Ranked #1 on Sequential Image Classification on Sequential MNIST

1 code implementation • Findings (EMNLP) 2021 • Maya Varma, Laurel Orr, Sen Wu, Megan Leszczynski, Xiao Ling, Christopher Ré

Named entity disambiguation (NED), which involves mapping textual mentions to structured entities, is particularly challenging in the medical domain due to the presence of rare entities.

no code implementations • 29 Sep 2021 • Daniel Yang Fu, Mayee F Chen, Michael Zhang, Kayvon Fatahalian, Christopher Ré

Supervised contrastive learning optimizes a loss that pushes together embeddings of points from the same class while pulling apart embeddings of points from different classes.

no code implementations • 16 Aug 2021 • Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Kohd, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, aditi raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang

AI is undergoing a paradigm shift with the rise of models (e. g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks.

no code implementations • 16 Aug 2021 • Armin W. Thomas, Christopher Ré, Russell A. Poldrack

In cognitive decoding, researchers aim to characterize a brain region's representations by identifying the cognitive states (e. g., accepting/rejecting a gamble) that can be identified from the region's activity.

2 code implementations • 16 Jul 2021 • Piero Molino, Christopher Ré

In this article we will describe how ML systems are currently structured, highlight important factors for their success and adoption, what are the issues current ML systems are facing and how the systems we developed addressed them.

1 code implementation • 1 Jul 2021 • Mayee Chen, Karan Goel, Nimit S. Sohoni, Fait Poms, Kayvon Fatahalian, Christopher Ré

If an unlabeled sample from the target distribution is available, along with a labeled sample from a possibly different source distribution, standard approaches such as importance weighting can be applied to estimate performance on the target.

1 code implementation • 7 Jun 2021 • Ines Chami, Albert Gu, Dat Nguyen, Christopher Ré

Given directions, PCA relies on: (1) a parameterization of subspaces spanned by these directions, (2) a method of projection onto subspaces that preserves information in these directions, and (3) an objective to optimize, namely the variance explained by projections.

1 code implementation • 2 Jun 2021 • Sahaana Suri, Ihab F. Ilyas, Christopher Ré, Theodoros Rekatsinas

Context enrichment, or rebuilding fragmented context, using keyless joins is an implicit or explicit step in machine learning (ML) pipelines over structured data sources.

1 code implementation • NeurIPS 2021 • Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, Christopher Ré

Recent advances in efficient Transformers have exploited either the sparsity or low-rank properties of attention matrices to reduce the computational and memory bottlenecks of modeling long sequences.

3 code implementations • NeurIPS 2021 • Nicholas Roberts, Mikhail Khodak, Tri Dao, Liam Li, Christopher Ré, Ameet Talwalkar

An important goal of AutoML is to automate-away the design of neural networks on new tasks in under-explored domains.

1 code implementation • 3 Mar 2021 • Mayee F. Chen, Benjamin Cohen-Wang, Stephen Mussmann, Frederic Sala, Christopher Ré

We apply our decomposition framework to three scenarios -- well-specified, misspecified, and corrected models -- to 1) choose between labeled and unlabeled data and 2) learn from their combination.

2 code implementations • NAACL 2021 • Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason Wu, Stephan Zheng, Caiming Xiong, Mohit Bansal, Christopher Ré

Despite impressive performance on standard benchmarks, deep neural networks are often brittle when deployed in real-world systems.

2 code implementations • ICLR 2020 • Tri Dao, Nimit S. Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski, Atri Rudra, Christopher Ré

Modern neural network architectures use structured linear transformations, such as low-rank matrices, sparse matrices, permutations, and the Fourier transform, to improve inference speed and reduce memory usage compared to general linear maps.

1 code implementation • NeurIPS 2020 • Nimit S. Sohoni, Jared A. Dunnmon, Geoffrey Angus, Albert Gu, Christopher Ré

As the subclass labels are frequently unavailable, models trained using only the coarser-grained class labels often exhibit highly variable performance across different subclasses.

no code implementations • 22 Oct 2020 • Fan Yang, Hongyang R. Zhang, Sen Wu, Weijie J. Su, Christopher Ré

A fundamental question in transfer learning is whether combining the data of both tasks works better than using only the target task's data (equivalently, whether a "positive information transfer" happens).

2 code implementations • NeurIPS 2020 • Ines Chami, Albert Gu, Vaggos Chatziafratis, Christopher Ré

Recently, Dasgupta reframed HC as a discrete optimization problem by introducing a global cost function measuring the quality of a given tree.

1 code implementation • ICLR 2021 • Karan Goel, Albert Gu, Yixuan Li, Christopher Ré

Particularly concerning are models with inconsistent performance on specific subgroups of a class, e. g., exhibiting disparities in skin cancer classification in the presence or absence of a spurious bandage.

1 code implementation • 26 Jun 2020 • Mayee F. Chen, Daniel Y. Fu, Frederic Sala, Sen Wu, Ravi Teja Mullapudi, Fait Poms, Kayvon Fatahalian, Christopher Ré

Our goal is to enable machine learning systems to be trained interactively.

no code implementations • ACL 2020 • Simran Arora, Avner May, Jian Zhang, Christopher Ré

We study the settings for which deep contextual embeddings (e. g., BERT) give large improvements in performance relative to classic pretrained embeddings (e. g., GloVe), and an even simpler baseline---random word embeddings---focusing on the impact of the training set size and the linguistic properties of the task.

1 code implementation • 7 May 2020 • Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, Kevin Murphy

The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning.

no code implementations • ICLR 2020 • Sen Wu, Hongyang R. Zhang, Christopher Ré

We investigate multi-task learning approaches that use a shared feature representation for all tasks.

2 code implementations • ICML 2020 • Sen Wu, Hongyang R. Zhang, Gregory Valiant, Christopher Ré

First, we show that transformations which preserve the labels of the data can improve estimation by enlarging the span of the training data.

3 code implementations • ACL 2020 • Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, Christopher Ré

However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs.

Ranked #3 on Link Prediction on YAGO3-10

no code implementations • 11 Apr 2020 • Zhaobin Kuang, Frederic Sala, Nimit Sohoni, Sen Wu, Aldo Córdova-Palomera, Jared Dunnmon, James Priest, Christopher Ré

To relax these assumptions, we propose Ivy, a new method to combine IV candidates that can handle correlated and invalid IV candidates in a robust manner.

no code implementations • 17 Mar 2020 • Sarah M. Hooper, Jared A. Dunnmon, Matthew P. Lungren, Sanjiv Sam Gambhir, Christopher Ré, Adam S. Wang, Bhavik N. Patel

We then show that the trained model is robust to reduced tube current and fewer projections, with the AUROC dropping only 0. 65% for images acquired with a 16x reduction in tube current and 0. 22% for images acquired with 8x fewer projections.

1 code implementation • 29 Feb 2020 • Megan Leszczynski, Avner May, Jian Zhang, Sen Wu, Christopher R. Aberger, Christopher Ré

To theoretically explain this tradeoff, we introduce a new measure of embedding instability---the eigenspace instability measure---which we prove bounds the disagreement in downstream predictions introduced by the change in word embeddings.

1 code implementation • ICML 2020 • Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M. Hooper, Kayvon Fatahalian, Christopher Ré

In this work, we show that, for a class of latent variable models highly applicable to weak supervision, we can find a closed-form solution to model parameters, obviating the need for iterative solutions like stochastic gradient descent (SGD).

1 code implementation • NeurIPS 2019 • Ines Chami, Rex Ying, Christopher Ré, Jure Leskovec

Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs.

Ranked #1 on Link Prediction on PPI

no code implementations • NeurIPS 2019 • Frederic Sala, Paroma Varma, Jason Fries, Daniel Y. Fu, Shiori Sagawa, Saelig Khattar, Ashwini Ramamoorthy, Ke Xiao, Kayvon Fatahalian, James Priest, Christopher Ré

Multi-resolution sources exacerbate this challenge due to complex correlations and sample complexity that scales in the length of the sequence.

no code implementations • 9 Oct 2019 • Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher R. Aberger, Christopher De Sa

Pipeline parallelism (PP) when training neural networks enables larger models to be partitioned spatially, leading to both lower network communication and overall higher hardware utilization.

1 code implementation • 7 Oct 2019 • Daniel Y. Fu, Will Crichton, James Hong, Xinwei Yao, Haotian Zhang, Anh Truong, Avanika Narayan, Maneesh Agrawala, Christopher Ré, Kayvon Fatahalian

Many real-world video analysis applications require the ability to identify domain-specific events in video, such as interviews and commercials in TV news broadcasts, or action sequences in film.

no code implementations • 27 Sep 2019 • Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, Christopher Ré

Machine learning models for medical image analysis often suffer from poor performance on important subsets of a population that are not identified during training or testing.

2 code implementations • NeurIPS 2019 • Vincent S. Chen, Sen Wu, Zhenzhen Weng, Alexander Ratner, Christopher Ré

In real-world machine learning applications, data subsets correspond to especially critical outcomes: vulnerable cyclist detections are safety-critical in an autonomous driving task, and "question" sentences might be important to a dialogue agent's language understanding for product purposes.

1 code implementation • 7 Sep 2019 • Christopher Ré, Feng Niu, Pallavi Gudipati, Charles Srisuwananukorn

We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production machine learning systems.

1 code implementation • NeurIPS 2019 • Avner May, Jian Zhang, Tri Dao, Christopher Ré

Finally, we show that by using the eigenspace overlap score as a selection criterion between embeddings drawn from a representative set we compressed, we can efficiently identify the better performing embedding with up to $2\times$ lower selection error rates than the next best measure of compression quality, and avoid the cost of training a model for each task of interest.

no code implementations • ICLR 2019 • Albert Gu, Frederic Sala, Beliz Gunel, Christopher Ré

The quality of the representations achieved by embeddings is determined by how well the geometry of the embedding space matches the structure of the data.

no code implementations • 24 Apr 2019 • Nimit S. Sohoni, Christopher R. Aberger, Megan Leszczynski, Jian Zhang, Christopher Ré

In this paper we study a fundamental question: How much memory is actually needed to train a neural network?

1 code implementation • 3 Apr 2019 • Alison Callahan, Jason A. Fries, Christopher Ré, James I Huddleston III, Nicholas J Giori, Scott Delp, Nigam H. Shah

Using hip replacements as a test case, our methods accurately extracted implant details and reports of complications and pain from electronic health records with up to 96. 3% precision, 98. 5% recall, and 97. 4% F1, improved classification performance by 12. 7- 53. 0% over rule-based methods, and detected over 6 times as many complication events compared to using structured data alone.

no code implementations • 29 Mar 2019 • Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael. I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Aparna Lakshmiratan, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Kunle Olukotun, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar

Machine learning (ML) techniques are enjoying rapidly increasing adoption.

no code implementations • 26 Mar 2019 • Jared Dunnmon, Alexander Ratner, Nishith Khandwala, Khaled Saab, Matthew Markert, Hersh Sagreiya, Roger Goldman, Christopher Lee-Messer, Matthew Lungren, Daniel Rubin, Christopher Ré

Labeling training datasets has become a key barrier to building medical machine learning models.

1 code implementation • 14 Mar 2019 • Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, Christopher Ré

Fast linear transforms are ubiquitous in machine learning, including the discrete Fourier transform, discrete cosine transform, and other structured transformations such as convolutions.

no code implementations • 14 Mar 2019 • Paroma Varma, Frederic Sala, Ann He, Alexander Ratner, Christopher Ré

Labeling training data is a key bottleneck in the modern machine learning pipeline.

no code implementations • 2 Dec 2018 • Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman Alborzi, Rahul Kuchhal, Christopher Ré, Rob Malkin

Labeling training data is one of the most costly bottlenecks in developing machine learning-based applications.

1 code implementation • 31 Oct 2018 • Jian Zhang, Avner May, Tri Dao, Christopher Ré

We investigate how to train kernel approximation methods that generalize well under a memory budget.

1 code implementation • 5 Oct 2018 • Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, Christopher Ré

Snorkel MeTaL: A framework for training models with multi-task weak supervision

Ranked #1 on Semantic Textual Similarity on SentEval

1 code implementation • NeurIPS 2018 • Anna T. Thomas, Albert Gu, Tri Dao, Atri Rudra, Christopher Ré

The low displacement rank (LDR) framework for structured matrices represents a matrix through two displacement operators and a low-rank residual.

no code implementations • 2 Jul 2018 • Aarthy Shivram Arun, Sai Vikneshwar Mani Jayaraman, Christopher Ré, Atri Rudra

We revisit the classical problem of exact inference on probabilistic graphical models (PGMs).

2 code implementations • ACL 2018 • Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang, Christopher Ré

Training accurate classifiers requires many labels, but each label provides only limited information (one bit for binary classification).

1 code implementation • ICML 2018 • Christopher De Sa, Albert Gu, Christopher Ré, Frederic Sala

Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization.

no code implementations • 5 Apr 2018 • Aarthy Shivram Arun, Sai Vikneshwar Mani Jayaraman, Christopher Ré, Atri Rudra

We revisit the classical problem of exact inference on probabilistic graphical models (PGMs).

no code implementations • 16 Mar 2018 • Tri Dao, Albert Gu, Alexander J. Ratner, Virginia Smith, Christopher De Sa, Christopher Ré

Data augmentation, a technique in which a training set is expanded with class-preserving transformations, is ubiquitous in modern machine learning pipelines.

1 code implementation • 9 Mar 2018 • Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev, Christopher R. Aberger, Kunle Olukotun, Christopher Ré

Low-precision computation is often used to lower the time and energy cost of machine learning, and recently hardware accelerators have been developed to support it.

2 code implementations • 28 Nov 2017 • Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, Christopher Ré

In a user study, subject matter experts build models 2. 8x faster and increase predictive performance an average 45. 5% versus seven hours of hand labeling.

no code implementations • NeurIPS 2017 • Tri Dao, Christopher De Sa, Christopher Ré

We show that deterministic feature maps can be constructed, for any $\gamma > 0$, to achieve error $\epsilon$ with $O(e^{e^\gamma} + \epsilon^{-1/\gamma})$ samples as $\epsilon$ goes to 0.

no code implementations • NeurIPS 2017 • Paroma Varma, Bryan He, Payal Bajaj, Imon Banerjee, Nishith Khandwala, Daniel L. Rubin, Christopher Ré

Obtaining enough labeled data to robustly train complex discriminative models is a major bottleneck in the machine learning pipeline.

1 code implementation • NeurIPS 2017 • Alexander J. Ratner, Henry R. Ehrenberg, Zeshan Hussain, Jared Dunnmon, Christopher Ré

Data augmentation is a ubiquitous technique for increasing the size of labeled training sets by leveraging task-specific data transformations that preserve class labels.

2 code implementations • 10 Jul 2017 • Christopher De Sa, Bryan He, Ioannis Mitliagkas, Christopher Ré, Peng Xu

We propose a simple variant of the power iteration with an added momentum term, that achieves both the optimal sample and iteration complexity.

1 code implementation • 13 May 2017 • Madalina Fiterau, Suvrat Bhooshan, Jason Fries, Charles Bournhonesque, Jennifer Hicks, Eni Halilaj, Christopher Ré, Scott Delp

In healthcare applications, temporal variables that encode movement, health status and longitudinal patient evolution are often accompanied by rich structured information such as demographics, diagnostics and medical exam data.

no code implementations • 20 Apr 2017 • Jason Fries, Sen Wu, Alex Ratner, Christopher Ré

We present SwellShark, a framework for building biomedical named entity recognition (NER) systems quickly and without hand-labeled data.

Ranked #2 on Weakly-Supervised Named Entity Recognition on BC5CDR

1 code implementation • 15 Mar 2017 • Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip Levis, Christopher Ré

We focus on knowledge base construction (KBC) from richly formatted data.

Databases

no code implementations • ICML 2017 • Stephen H. Bach, Bryan He, Alexander Ratner, Christopher Ré

Curating labeled training data has become the primary bottleneck in machine learning.

no code implementations • 25 Oct 2016 • Paroma Varma, Bryan He, Dan Iter, Peng Xu, Rose Yu, Christopher De Sa, Christopher Ré

Prior work has explored learning accuracies for these sources even without ground truth labels, but they assume that a single accuracy parameter is sufficient to model the behavior of these sources over the entire training set.

no code implementations • NeurIPS 2016 • Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani, Christopher Ré, Michael W. Mahoney

As second-order methods prove to be effective in finding the minimizer to a high-precision, in this work, we propose randomized Newton-type algorithms that exploit \textit{non-uniform} sub-sampling of $\{\nabla^2 f_i(w)\}_{i=1}^{n}$, as well as inexact updates, as means to reduce the computational complexity.

no code implementations • 23 Jun 2016 • Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, Christopher Ré

Consider a number of workers running SGD independently on the same pool of data and averaging the models every once in a while -- a common but not well understood practice.

1 code implementation • 14 Jun 2016 • Stefan Hadjis, Ce Zhang, Ioannis Mitliagkas, Dan Iter, Christopher Ré

Given a specification of a convolutional neural network, our goal is to minimize the time to train this model on a cluster of commodity CPUs and GPUs.

no code implementations • NeurIPS 2016 • Bryan He, Christopher De Sa, Ioannis Mitliagkas, Christopher Ré

Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions.

3 code implementations • 31 May 2016 • Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, Christopher Ré

Since asynchronous methods have better hardware efficiency, this result may shed light on when asynchronous execution is more efficient for deep learning systems.

3 code implementations • NeurIPS 2016 • Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, Christopher Ré

Additionally, in initial user studies we observed that data programming may be an easier way for non-experts to create machine learning models when training data is limited or unavailable.

no code implementations • 24 Feb 2016 • Christopher De Sa, Kunle Olukotun, Christopher Ré

Gibbs sampling is a Markov chain Monte Carlo technique commonly used for estimating marginal distributions.

no code implementations • NeurIPS 2015 • Christopher M. De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré

Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems.

no code implementations • NeurIPS 2015 • Sorathan Chaturapruek, John C. Duchi, Christopher Ré

We show that asymptotically, completely asynchronous stochastic gradient procedures achieve optimal (even to constant factors) convergence rates for the solution of convex optimization problems under nearly the same conditions required for asymptotic optimality of standard stochastic gradient procedures.

no code implementations • NeurIPS 2015 • Christopher De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré

Gibbs sampling on factor graphs is a widely used inference technique, which often produces good empirical results.

1 code implementation • 4 Aug 2015 • John C. Duchi, Sorathan Chaturapruek, Christopher Ré

We show that asymptotically, completely asynchronous stochastic gradient procedures achieve optimal (even to constant factors) convergence rates for the solution of convex optimization problems under nearly the same conditions required for asymptotic optimality of standard stochastic gradient procedures.

no code implementations • 20 Jul 2015 • Yuke Zhu, Ce Zhang, Christopher Ré, Li Fei-Fei

The complexity of the visual world creates significant challenges for comprehensive visual understanding.

no code implementations • 22 Jun 2015 • Christopher De Sa, Ce Zhang, Kunle Olukotun, Christopher Ré

with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic.

1 code implementation • 16 Apr 2015 • Stefan Hadjis, Firas Abuzaid, Ce Zhang, Christopher Ré

We present Caffe con Troll (CcT), a fully compatible end-to-end version of the popular framework Caffe with rebuilt internals.

no code implementations • 12 Feb 2015 • Jiyan Yang, Yin-Lam Chow, Christopher Ré, Michael W. Mahoney

We aim to bridge the gap between these two methods in solving constrained overdetermined linear regression problems---e. g., $\ell_2$ and $\ell_1$ regression problems.

no code implementations • 3 Feb 2015 • Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, Christopher Ré

Populating a database with unstructured information is a long-standing problem in industry and research that encompasses problems of extraction, cleaning, and integration.

no code implementations • NeurIPS 2014 • Yingbo Zhou, Utkarsh Porwal, Ce Zhang, Hung Q. Ngo, XuanLong Nguyen, Christopher Ré, Venu Govindaraju

Superior performance of our method is demonstrated on a challenging relation extraction task from a very large data set that have both redundant features and sample size in the order of millions.

no code implementations • 5 Nov 2014 • Christopher De Sa, Kunle Olukotun, Christopher Ré

Stochastic gradient descent (SGD) on a low-rank factorization is commonly employed to speed up matrix problems including matrix completion, subspace tracking, and SDP relaxation.

no code implementations • 24 Jul 2014 • Christopher Ré, Amir Abbas Sadeghian, Zifei Shan, Jaeho Shin, Feiran Wang, Sen Wu, Ce Zhang

Our approach to KBC is based on joint probabilistic inference and learning, but we do not see inference as either a panacea or a magic bullet: inference is a tool that allows us to be systematic in how we construct, debug, and improve the quality of such systems.

no code implementations • 11 Jun 2014 • Shanan E. Peters, Ce Zhang, Miron Livny, Christopher Ré

Many aspects of macroevolutionary theory and our understanding of biotic responses to global environmental change derive from literature-based compilations of palaeontological data.

1 code implementation • 28 Mar 2014 • Ce Zhang, Christopher Ré

We perform the first study of the tradeoff space of access methods and replication to support statistical analytics using first-order methods executed in the main memory of a Non-Uniform Memory Access (NUMA) machine.

Cannot find the paper you are looking for? You can
Submit a new open access paper.

Contact us on:
hello@paperswithcode.com
.
Papers With Code is a free resource with all data licensed under CC-BY-SA.