Search Results for author: Chuanqi Tan

Found 48 papers, 31 papers with code

RAMM: Retrieval-augmented Biomedical Visual Question Answering with Multi-modal Pre-training

1 code implementation1 Mar 2023 Zheng Yuan, Qiao Jin, Chuanqi Tan, Zhengyun Zhao, Hongyi Yuan, Fei Huang, Songfang Huang

We propose to retrieve similar image-text pairs based on ITC from pretraining datasets and introduce a novel retrieval-attention module to fuse the representation of the image and the question with the retrieved images and texts.

Question Answering Retrieval +2

Molecular Geometry-aware Transformer for accurate 3D Atomic System modeling

no code implementations2 Feb 2023 Zheng Yuan, Yaoyun Zhang, Chuanqi Tan, Wei Wang, Fei Huang, Songfang Huang

To alleviate this limitation, we propose Moleformer, a novel Transformer architecture that takes nodes (atoms) and edges (bonds and nonbonding atom pairs) as inputs and models the interactions among them using rotational and translational invariant geometry-aware spatial encoding.

One Model for All Domains: Collaborative Domain-Prefix Tuning for Cross-Domain NER

2 code implementations25 Jan 2023 Xiang Chen, Lei LI, Shuofei Qiao, Ningyu Zhang, Chuanqi Tan, Yong Jiang, Fei Huang, Huajun Chen

Previous typical solutions mainly obtain a NER model by pre-trained language models (PLMs) with data from a rich-resource domain and adapt it to the target domain.

NER Text Generation

Reasoning with Language Model Prompting: A Survey

2 code implementations19 Dec 2022 Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, Huajun Chen

Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc.

Arithmetic Reasoning Common Sense Reasoning +4

HyPe: Better Pre-trained Language Model Fine-tuning with Hidden Representation Perturbation

no code implementations17 Dec 2022 Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, Songfang Huang

Unlike previous works that only add noise to inputs or parameters, we argue that the hidden representations of Transformers layers convey more diverse and meaningful language information.

Language Modelling Natural Language Inference

Decoupling Knowledge from Memorization: Retrieval-augmented Prompt Learning

2 code implementations29 May 2022 Xiang Chen, Lei LI, Ningyu Zhang, Xiaozhuan Liang, Shumin Deng, Chuanqi Tan, Fei Huang, Luo Si, Huajun Chen

Specifically, vanilla prompt learning may struggle to utilize atypical instances by rote during fully-supervised training or overfit shallow patterns with low-shot data.

Few-Shot Text Classification Memorization +5

Parameter-Efficient Sparsity for Large Language Models Fine-Tuning

2 code implementations23 May 2022 Yuchao Li, Fuli Luo, Chuanqi Tan, Mengdi Wang, Songfang Huang, Shen Li, Junjie Bai

With the dramatically increased number of parameters in language models, sparsity methods have received ever-increasing research focus to compress and accelerate the models.

Towards Unified Prompt Tuning for Few-shot Text Classification

1 code implementation11 May 2022 Jianing Wang, Chengyu Wang, Fuli Luo, Chuanqi Tan, Minghui Qiu, Fei Yang, Qiuhui Shi, Songfang Huang, Ming Gao

Prompt-based fine-tuning has boosted the performance of Pre-trained Language Models (PLMs) on few-shot text classification by employing task-specific prompts.

Few-Shot Learning Few-Shot Text Classification +5

Good Visual Guidance Makes A Better Extractor: Hierarchical Visual Prefix for Multimodal Entity and Relation Extraction

1 code implementation7 May 2022 Xiang Chen, Ningyu Zhang, Lei LI, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, Luo Si, Huajun Chen

To deal with these issues, we propose a novel Hierarchical Visual Prefix fusion NeTwork (HVPNeT) for visual-enhanced entity and relation extraction, aiming to achieve more effective and robust performance.

named-entity-recognition Named Entity Recognition +2

Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning

1 code implementation4 May 2022 Xiang Chen, Lei LI, Ningyu Zhang, Chuanqi Tan, Fei Huang, Luo Si, Huajun Chen

Note that the previous parametric learning paradigm can be viewed as memorization regarding training data as a book and inference as the close-book test.

Few-Shot Learning Memorization +2

Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion

1 code implementation4 May 2022 Xiang Chen, Ningyu Zhang, Lei LI, Shumin Deng, Chuanqi Tan, Changliang Xu, Fei Huang, Luo Si, Huajun Chen

Since most MKGs are far from complete, extensive knowledge graph completion studies have been proposed focusing on the multimodal entity, relation extraction and link prediction.

Information Retrieval Link Prediction +4

Contrastive Demonstration Tuning for Pre-trained Language Models

1 code implementation9 Apr 2022 Xiaozhuan Liang, Ningyu Zhang, Siyuan Cheng, Zhenru Zhang, Chuanqi Tan, Huajun Chen

Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios.

Learning to Ask for Data-Efficient Event Argument Extraction

no code implementations1 Oct 2021 Hongbin Ye, Ningyu Zhang, Zhen Bi, Shumin Deng, Chuanqi Tan, Hui Chen, Fei Huang, Huajun Chen

Event argument extraction (EAE) is an important task for information extraction to discover specific argument roles.

Event Argument Extraction

Document-level Relation Extraction as Semantic Segmentation

2 code implementations7 Jun 2021 Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng, Chuanqi Tan, Mosha Chen, Fei Huang, Luo Si, Huajun Chen

Specifically, we leverage an encoder module to capture the context information of entities and a U-shaped segmentation module over the image-style feature map to capture global interdependency among triples.

Document-level Relation Extraction Semantic Segmentation

KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction

1 code implementation15 Apr 2021 Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, Huajun Chen

To this end, we focus on incorporating knowledge among relation labels into prompt-tuning for relation extraction and propose a Knowledge-aware Prompt-tuning approach with synergistic optimization (KnowPrompt).

Ranked #5 on Dialog Relation Extraction on DialogRE (F1 (v1) metric)

Dialog Relation Extraction Language Modelling +2

Probing BERT in Hyperbolic Spaces

1 code implementation ICLR 2021 Boli Chen, Yao Fu, Guangwei Xu, Pengjun Xie, Chuanqi Tan, Mosha Chen, Liping Jing

We introduce a Poincare probe, a structural probe projecting these embeddings into a Poincare subspace with explicitly defined hierarchies.

Word Embeddings

Normal vs. Adversarial: Salience-based Analysis of Adversarial Samples for Relation Extraction

1 code implementation1 Apr 2021 Luoqiu Li, Xiang Chen, Zhen Bi, Xin Xie, Shumin Deng, Ningyu Zhang, Chuanqi Tan, Mosha Chen, Huajun Chen

Recent neural-based relation extraction approaches, though achieving promising improvement on benchmark datasets, have reported their vulnerability towards adversarial attacks.

Relation Extraction

Predicting Clinical Trial Results by Implicit Evidence Integration

1 code implementation EMNLP 2020 Qiao Jin, Chuanqi Tan, Mosha Chen, Xiaozhong Liu, Songfang Huang

In the CTRP framework, a model takes a PICO-formatted clinical trial proposal with its background as input and predicts the result, i. e. how the Intervention group compares with the Comparison group in terms of the measured Outcome in the studied Population.

PICO

Attention-based Transfer Learning for Brain-computer Interface

no code implementations25 Apr 2019 Chuanqi Tan, Fuchun Sun, Tao Kong, Bin Fang, Wenchang Zhang

Different functional areas of the human brain play different roles in brain activity, which has not been paid sufficient research attention in the brain-computer interface (BCI) field.

Classification Electroencephalogram (EEG) +2

Neural Melody Composition from Lyrics

no code implementations12 Sep 2018 Hangbo Bao, Shaohan Huang, Furu Wei, Lei Cui, Yu Wu, Chuanqi Tan, Songhao Piao, Ming Zhou

In this paper, we study a novel task that learns to compose music from natural language.

Deep Transfer Learning for EEG-based Brain Computer Interface

no code implementations6 Aug 2018 Chuanqi Tan, Fuchun Sun, Wenchang Zhang

First, we model cognitive events based on EEG data by characterizing the data using EEG optical flow, which is designed to preserve multimodal EEG information in a uniform representation.

Electroencephalogram (EEG) Optical Flow Estimation +1

A Survey on Deep Transfer Learning

no code implementations6 Aug 2018 Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, Chunfang Liu

As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains.

General Classification Transfer Learning

Multimodal Classification with Deep Convolutional-Recurrent Neural Networks for Electroencephalography

no code implementations24 Jul 2018 Chuanqi Tan, Fuchun Sun, Wenchang Zhang, Jianhua Chen, Chunfang Liu

Herein, we propose a novel approach to modeling cognitive events from EEG data by reducing it to a video classification problem, which is designed to preserve the multimodal information of EEG.

Classification Electroencephalogram (EEG) +3

Multiway Attention Networks for Modeling Sentence Pairs

1 code implementation IJCAI 2018 Chuanqi Tan, Furu Wei, Wenhui Wang, Weifeng Lv, Ming Zhou

Modeling sentence pairs plays the vital role for judging the relationship between two sentences, such as paraphrase identification, natural language inference, and answer sentence selection.

Natural Language Inference Paraphrase Identification

S-Net: From Answer Extraction to Answer Generation for Machine Reading Comprehension

no code implementations15 Jun 2017 Chuanqi Tan, Furu Wei, Nan Yang, Bowen Du, Weifeng Lv, Ming Zhou

We build the answer extraction model with state-of-the-art neural networks for single passage reading comprehension, and propose an additional task of passage ranking to help answer extraction in multiple passages.

Answer Generation Machine Reading Comprehension +1

Entity Linking for Queries by Searching Wikipedia Sentences

no code implementations EMNLP 2017 Chuanqi Tan, Furu Wei, Pengjie Ren, Weifeng Lv, Ming Zhou

The key idea is to search sentences similar to a query from Wikipedia articles and directly use the human-annotated entities in the similar sentences as candidate entities for the query.

Entity Linking Word Embeddings

Neural Question Generation from Text: A Preliminary Study

4 code implementations6 Apr 2017 Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, Ming Zhou

Automatic question generation aims to generate questions from a text passage where the generated questions can be answered by certain sub-spans of the given passage.

Question Generation Question-Generation

Cannot find the paper you are looking for? You can Submit a new open access paper.