1 code implementation • 26 May 2021 • Chun-Ta Lu, Yun Zeng, Da-Cheng Juan, Yicheng Fan, Zhe Li, Jan Dlabal, Yi-Ting Chen, Arjun Gopalan, Allan Heydon, Chun-Sung Ferng, Reah Miyara, Ariel Fuxman, Futang Peng, Zhen Li, Tom Duerig, Andrew Tomkins
In this work, we propose CARLS, a novel framework for augmenting the capacity of existing deep learning frameworks by enabling multiple components -- model trainers, knowledge makers and knowledge banks -- to concertedly work together in an asynchronous fashion across hardware platforms.
no code implementations • EMNLP 2021 • Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli, Hyung Won Chung, Yin-Wen Chang, Chun-Sung Ferng
Our analysis shows that the gain actually comes from moving positional information to attention layer from the input.
no code implementations • CVPR 2021 • Pranjal Awasthi, George Yu, Chun-Sung Ferng, Andrew Tomkins, Da-Cheng Juan
In this work we extend the above setting to consider the problem of training of deep neural networks that can be made simultaneously robust to perturbations applied in multiple natural representation spaces.
no code implementations • 15 Aug 2020 • Henry Tsai, Jayden Ooi, Chun-Sung Ferng, Hyung Won Chung, Jason Riesa
Transformer-based models have achieved stateof-the-art results in many tasks in natural language processing.