Search Results for author: Chunhui Lin

Found 8 papers, 5 papers with code

Harmonizing Visual Text Comprehension and Generation

1 code implementation23 Jul 2024 Zhen Zhao, Jingqun Tang, Binghong Wu, Chunhui Lin, Shu Wei, Hao liu, Xin Tan, Zhizhong Zhang, Can Huang, Yuan Xie

Our work delineates the viability of an integrated approach to multimodal generation within the visual text domain, setting a foundation for subsequent inquiries.

multimodal generation Reading Comprehension +1

MTVQA: Benchmarking Multilingual Text-Centric Visual Question Answering

1 code implementation20 May 2024 Jingqun Tang, Qi Liu, YongJie Ye, Jinghui Lu, Shu Wei, Chunhui Lin, Wanqing Li, Mohamad Fitri Faiz Bin Mahmood, Hao Feng, Zhen Zhao, Yanjie Wang, Yuliang Liu, Hao liu, Xiang Bai, Can Huang

Text-Centric Visual Question Answering (TEC-VQA) in its proper format not only facilitates human-machine interaction in text-centric visual environments but also serves as a de facto gold proxy to evaluate AI models in the domain of text-centric scene understanding.

Benchmarking Question Answering +4

TextSquare: Scaling up Text-Centric Visual Instruction Tuning

no code implementations19 Apr 2024 Jingqun Tang, Chunhui Lin, Zhen Zhao, Shu Wei, Binghong Wu, Qi Liu, Hao Feng, Yang Li, Siqi Wang, Lei Liao, Wei Shi, Yuliang Liu, Hao liu, Yuan Xie, Xiang Bai, Can Huang

Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data.

Hallucination Hallucination Evaluation +2

Multi-modal In-Context Learning Makes an Ego-evolving Scene Text Recognizer

1 code implementation CVPR 2024 Zhen Zhao, Jingqun Tang, Chunhui Lin, Binghong Wu, Can Huang, Hao liu, Xin Tan, Zhizhong Zhang, Yuan Xie

A straightforward solution is performing model fine-tuning tailored to a specific scenario, but it is computationally intensive and requires multiple model copies for various scenarios.

Diversity In-Context Learning +1

CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

1 code implementation11 Mar 2023 Simon Graham, Quoc Dang Vu, Mostafa Jahanifar, Martin Weigert, Uwe Schmidt, Wenhua Zhang, Jun Zhang, Sen yang, Jinxi Xiang, Xiyue Wang, Josef Lorenz Rumberger, Elias Baumann, Peter Hirsch, Lihao Liu, Chenyang Hong, Angelica I. Aviles-Rivero, Ayushi Jain, Heeyoung Ahn, Yiyu Hong, Hussam Azzuni, Min Xu, Mohammad Yaqub, Marie-Claire Blache, Benoît Piégu, Bertrand Vernay, Tim Scherr, Moritz Böhland, Katharina Löffler, Jiachen Li, Weiqin Ying, Chixin Wang, Dagmar Kainmueller, Carola-Bibiane Schönlieb, Shuolin Liu, Dhairya Talsania, Yughender Meda, Prakash Mishra, Muhammad Ridzuan, Oliver Neumann, Marcel P. Schilling, Markus Reischl, Ralf Mikut, Banban Huang, Hsiang-Chin Chien, Ching-Ping Wang, Chia-Yen Lee, Hong-Kun Lin, Zaiyi Liu, Xipeng Pan, Chu Han, Jijun Cheng, Muhammad Dawood, Srijay Deshpande, Raja Muhammad Saad Bashir, Adam Shephard, Pedro Costa, João D. Nunes, Aurélio Campilho, Jaime S. Cardoso, Hrishikesh P S, Densen Puthussery, Devika R G, Jiji C V, Ye Zhang, Zijie Fang, Zhifan Lin, Yongbing Zhang, Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Vi Thi-Tuong Vo, Soo-Hyung Kim, Taebum Lee, Satoshi Kondo, Satoshi Kasai, Pranay Dumbhare, Vedant Phuse, Yash Dubey, Ankush Jamthikar, Trinh Thi Le Vuong, Jin Tae Kwak, Dorsa Ziaei, Hyun Jung, Tianyi Miao, David Snead, Shan E Ahmed Raza, Fayyaz Minhas, Nasir M. Rajpoot

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome.

Nuclear Segmentation Segmentation +2

Separable-HoverNet and Instance-YOLO for Colon Nuclei Identification and Counting

no code implementations1 Mar 2022 Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Dong Hu

Nuclear segmentation, classification and quantification within Haematoxylin & Eosin stained histology images enables the extraction of interpretable cell-based features that can be used in downstream explainable models in computational pathology (CPath).

Classification Explainable Models +2

Cannot find the paper you are looking for? You can Submit a new open access paper.