1 code implementation • 8 May 2024 • Chunxu Zhang, Guodong Long, Hongkuan Guo, Xiao Fang, Yang song, Zhaojie Liu, Guorui Zhou, Zijian Zhang, Yang Liu, Bo Yang
It becomes a new open challenge to enable the foundation model to capture user preference changes in a timely manner with reasonable communication and computation costs while preserving privacy.
1 code implementation • 29 Apr 2024 • Zijian Zhang, Shuchang Liu, Jiaao Yu, Qingpeng Cai, Xiangyu Zhao, Chunxu Zhang, Ziru Liu, Qidong Liu, Hongwei Zhao, Lantao Hu, Peng Jiang, Kun Gai
M3oE integrates multi-domain information, maps knowledge across domains and tasks, and optimizes multiple objectives.
1 code implementation • 18 Sep 2023 • Zijian Zhang, Xiangyu Zhao, Qidong Liu, Chunxu Zhang, Qian Ma, Wanyu Wang, Hongwei Zhao, Yiqi Wang, Zitao Liu
We devise a spatio-temporal transformer and a parameter-sharing training scheme to address the common knowledge among different spatio-temporal attributes.
1 code implementation • 22 May 2023 • Chunxu Zhang, Guodong Long, Tianyi Zhou, Zijian Zhang, Peng Yan, Bo Yang
However, this separation of the recommendation model and users' private data poses a challenge in providing quality service, particularly when it comes to new items, namely cold-start recommendations in federated settings.
1 code implementation • 13 May 2023 • Chunxu Zhang, Guodong Long, Tianyi Zhou, Zijjian Zhang, Peng Yan, Bo Yang
The federated recommendation system is an emerging AI service architecture that provides recommendation services in a privacy-preserving manner.
no code implementations • 16 Apr 2023 • Zijian Zhang, Xiangyu Zhao, Hao Miao, Chunxu Zhang, Hongwei Zhao, Junbo Zhang
To cope with the problems above, we propose an Automated Spatio-Temporal multi-task Learning (AutoSTL) method to handle multiple spatio-temporal tasks jointly.
1 code implementation • 16 Jan 2023 • Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang, Chengqi Zhang, Bo Yang
Moreover, we provide visualizations and in-depth analysis of the personalization techniques in item embedding, which shed novel insights on the design of recommender systems in federated settings.
no code implementations • NeurIPS 2020 • Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Chunxu Zhang, Bo Yang
Most graph embedding methods preserve the proximity in a graph into a manifold in an embedding space.
1 code implementation • 6 May 2019 • Chunxu Zhang, Jiaxu Cui, Bo Yang
Although we can benefit a lot from DA, designing appropriate DA policies requires a lot of expert experience and time consumption, and the evaluation of searching the optimal policies is costly.