Search Results for author: Cihang Xie

Found 30 papers, 23 papers with code

In Defense of Image Pre-Training for Spatiotemporal Recognition

1 code implementation3 May 2022 Xianhang Li, Huiyu Wang, Chen Wei, Jieru Mei, Alan Yuille, Yuyin Zhou, Cihang Xie

Inspired by this observation, we hypothesize that the key to effectively leveraging image pre-training lies in the decomposition of learning spatial and temporal features, and revisiting image pre-training as the appearance prior to initializing 3D kernels.

Video Recognition

Fast AdvProp

1 code implementation ICLR 2022 Jieru Mei, Yucheng Han, Yutong Bai, Yixiao Zhang, Yingwei Li, Xianhang Li, Alan Yuille, Cihang Xie

Specifically, our modifications in Fast AdvProp are guided by the hypothesis that disentangled learning with adversarial examples is the key for performance improvements, while other training recipes (e. g., paired clean and adversarial training samples, multi-step adversarial attackers) could be largely simplified.

Data Augmentation Object Detection

Learning to Bootstrap for Combating Label Noise

1 code implementation9 Feb 2022 Yuyin Zhou, Xianhang Li, Fengze Liu, Xuxi Chen, Lequan Yu, Cihang Xie, Matthew P. Lungren, Lei Xing

Specifically, our method dynamically adjusts the per-sample importance weight between the real observed labels and pseudo-labels, where the weights are efficiently determined in a meta process.

Ranked #5 on Image Classification on Clothing1M (using clean data) (using extra training data)

Image Classification Representation Learning

Image BERT Pre-training with Online Tokenizer

no code implementations ICLR 2022 Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, Tao Kong

The success of language Transformers is primarily attributed to the pretext task of masked language modeling (MLM), where texts are first tokenized into semantically meaningful pieces.

Image Classification Instance Segmentation +4

Simulated Adversarial Testing of Face Recognition Models

no code implementations8 Jun 2021 Nataniel Ruiz, Adam Kortylewski, Weichao Qiu, Cihang Xie, Sarah Adel Bargal, Alan Yuille, Stan Sclaroff

In this work, we propose a framework for learning how to test machine learning algorithms using simulators in an adversarial manner in order to find weaknesses in the model before deploying it in critical scenarios.

Face Recognition

Robust and Accurate Object Detection via Adversarial Learning

1 code implementation CVPR 2021 Xiangning Chen, Cihang Xie, Mingxing Tan, Li Zhang, Cho-Jui Hsieh, Boqing Gong

Data augmentation has become a de facto component for training high-performance deep image classifiers, but its potential is under-explored for object detection.

AutoML Data Augmentation +1

Batch Normalization with Enhanced Linear Transformation

1 code implementation28 Nov 2020 Yuhui Xu, Lingxi Xie, Cihang Xie, Jieru Mei, Siyuan Qiao, Wei Shen, Hongkai Xiong, Alan Yuille

Batch normalization (BN) is a fundamental unit in modern deep networks, in which a linear transformation module was designed for improving BN's flexibility of fitting complex data distributions.

Shape-Texture Debiased Neural Network Training

1 code implementation ICLR 2021 Yingwei Li, Qihang Yu, Mingxing Tan, Jieru Mei, Peng Tang, Wei Shen, Alan Yuille, Cihang Xie

To prevent models from exclusively attending on a single cue in representation learning, we augment training data with images with conflicting shape and texture information (eg, an image of chimpanzee shape but with lemon texture) and, most importantly, provide the corresponding supervisions from shape and texture simultaneously.

Adversarial Robustness Data Augmentation +2

Smooth Adversarial Training

1 code implementation25 Jun 2020 Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, Quoc V. Le

SAT also works well with larger networks: it helps EfficientNet-L1 to achieve 82. 2% accuracy and 58. 6% robustness on ImageNet, outperforming the previous state-of-the-art defense by 9. 5% for accuracy and 11. 6% for robustness.

Adversarial Defense Adversarial Robustness

Neural Architecture Search for Lightweight Non-Local Networks

2 code implementations CVPR 2020 Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie Yang, Cihang Xie, Qihang Yu, Yuyin Zhou, Song Bai, Alan Yuille

However, it has been rarely explored to embed the NL blocks in mobile neural networks, mainly due to the following challenges: 1) NL blocks generally have heavy computation cost which makes it difficult to be applied in applications where computational resources are limited, and 2) it is an open problem to discover an optimal configuration to embed NL blocks into mobile neural networks.

Image Classification Neural Architecture Search

Adversarial Examples Improve Image Recognition

6 code implementations CVPR 2020 Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan Yuille, Quoc V. Le

We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger.

Image Classification

Intriguing properties of adversarial training at scale

no code implementations ICLR 2020 Cihang Xie, Alan Yuille

This two-domain hypothesis may explain the issue of BN when training with a mixture of clean and adversarial images, as estimating normalization statistics of this mixture distribution is challenging.

Adversarial Robustness

Regional Homogeneity: Towards Learning Transferable Universal Adversarial Perturbations Against Defenses

1 code implementation ECCV 2020 Yingwei Li, Song Bai, Cihang Xie, Zhenyu Liao, Xiaohui Shen, Alan L. Yuille

We observe the property of regional homogeneity in adversarial perturbations and suggest that the defenses are less robust to regionally homogeneous perturbations.

Object Detection Semantic Segmentation

Learning Transferable Adversarial Examples via Ghost Networks

1 code implementation9 Dec 2018 Yingwei Li, Song Bai, Yuyin Zhou, Cihang Xie, Zhishuai Zhang, Alan Yuille

The critical principle of ghost networks is to apply feature-level perturbations to an existing model to potentially create a huge set of diverse models.

Adversarial Attack

Adversarial Attacks and Defences Competition

1 code implementation31 Mar 2018 Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, Jian-Yu Wang, Zhishuai Zhang, Zhou Ren, Alan Yuille, Sangxia Huang, Yao Zhao, Yuzhe Zhao, Zhonglin Han, Junjiajia Long, Yerkebulan Berdibekov, Takuya Akiba, Seiya Tokui, Motoki Abe

To accelerate research on adversarial examples and robustness of machine learning classifiers, Google Brain organized a NIPS 2017 competition that encouraged researchers to develop new methods to generate adversarial examples as well as to develop new ways to defend against them.

Improving Transferability of Adversarial Examples with Input Diversity

1 code implementation CVPR 2019 Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jian-Yu Wang, Zhou Ren, Alan Yuille

We hope that our proposed attack strategy can serve as a strong benchmark baseline for evaluating the robustness of networks to adversaries and the effectiveness of different defense methods in the future.

Adversarial Attack Image Classification

Single-Shot Object Detection with Enriched Semantics

no code implementations CVPR 2018 Zhishuai Zhang, Siyuan Qiao, Cihang Xie, Wei Shen, Bo wang, Alan L. Yuille

Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module.

Object Detection Semantic Segmentation

Visual Concepts and Compositional Voting

no code implementations13 Nov 2017 Jianyu Wang, Zhishuai Zhang, Cihang Xie, Yuyin Zhou, Vittal Premachandran, Jun Zhu, Lingxi Xie, Alan Yuille

We use clustering algorithms to study the population activities of the features and extract a set of visual concepts which we show are visually tight and correspond to semantic parts of vehicles.

Semantic Part Detection

DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection under Partial Occlusion

no code implementations CVPR 2018 Zhishuai Zhang, Cihang Xie, Jian-Yu Wang, Lingxi Xie, Alan L. Yuille

The first layer extracts the evidence of local visual cues, and the second layer performs a voting mechanism by utilizing the spatial relationship between visual cues and semantic parts.

Semantic Part Detection

Detecting Semantic Parts on Partially Occluded Objects

no code implementations25 Jul 2017 Jianyu Wang, Cihang Xie, Zhishuai Zhang, Jun Zhu, Lingxi Xie, Alan Yuille

Our approach detects semantic parts by accumulating the confidence of local visual cues.

Semantic Part Detection

Adversarial Examples for Semantic Segmentation and Object Detection

2 code implementations ICCV 2017 Cihang Xie, Jian-Yu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille

Our observation is that both segmentation and detection are based on classifying multiple targets on an image (e. g., the basic target is a pixel or a receptive field in segmentation, and an object proposal in detection), which inspires us to optimize a loss function over a set of pixels/proposals for generating adversarial perturbations.

Adversarial Attack Object Detection +1

Unsupervised learning of object semantic parts from internal states of CNNs by population encoding

1 code implementation21 Nov 2015 Jianyu Wang, Zhishuai Zhang, Cihang Xie, Vittal Premachandran, Alan Yuille

We address the key question of how object part representations can be found from the internal states of CNNs that are trained for high-level tasks, such as object classification.

Keypoint Detection

Cannot find the paper you are looking for? You can Submit a new open access paper.