no code implementations • 29 Nov 2019 • Alireza Mehrtash, William M. Wells III, Clare M. Tempany, Purang Abolmaesumi, Tina Kapur
We make the following contributions: 1) We systematically compare cross entropy loss with Dice loss in terms of segmentation quality and uncertainty estimation of FCNs; 2) We propose model ensembling for confidence calibration of the FCNs trained with batch normalization and Dice loss; 3) We assess the ability of calibrated FCNs to predict segmentation quality of structures and detect out-of-distribution test examples.
no code implementations • 31 Dec 2018 • Alireza Sedghi, Jie Luo, Alireza Mehrtash, Steve Pieper, Clare M. Tempany, Tina Kapur, Parvin Mousavi, William M. Wells III
This paper establishes an information theoretic framework for deep metric based image registration techniques.
2 code implementations • 16 Jul 2018 • Michael Schwier, Joost van Griethuysen, Mark G Vangel, Steve Pieper, Sharon Peled, Clare M. Tempany, Hugo JWL Aerts, Ron Kikinis, Fiona M Fennessy, Andrey Fedorov
In this study we assessed the repeatability of the values of radiomics features for small prostate tumors using test-retest Multiparametric Magnetic Resonance Imaging (mpMRI) images.
no code implementations • 4 Apr 2018 • Alireza Sedghi, Jie Luo, Alireza Mehrtash, Steve Pieper, Clare M. Tempany, Tina Kapur, Parvin Mousavi, William M. Wells III
In this paper, we propose a strategy for learning such metrics from roughly aligned training data.
no code implementations • 25 Feb 2017 • Mohsen Ghafoorian, Alireza Mehrtash, Tina Kapur, Nico Karssemeijer, Elena Marchiori, Mehran Pesteie, Charles R. G. Guttmann, Frank-Erik de Leeuw, Clare M. Tempany, Bram van Ginneken, Andriy Fedorov, Purang Abolmaesumi, Bram Platel, William M. Wells III
In this study, we aim to answer the following central questions regarding domain adaptation in medical image analysis: Given a fitted legacy model, 1) How much data from the new domain is required for a decent adaptation of the original network?