1 code implementation • 5 Mar 2025 • Fanwen Wang, Zi Wang, Yan Li, Jun Lyu, Chen Qin, Shuo Wang, Kunyuan Guo, Mengting Sun, Mingkai Huang, Haoyu Zhang, Michael Tänzer, Qirong Li, Xinran Chen, Jiahao Huang, Yinzhe Wu, Kian Anvari Hamedani, Yuntong Lyu, Longyu Sun, Qing Li, Ziqiang Xu, Bingyu Xin, Dimitris N. Metaxas, Narges Razizadeh, Shahabedin Nabavi, George Yiasemis, Jonas Teuwen, Zhenxi Zhang, Sha Wang, Chi Zhang, Daniel B. Ennis, Zhihao Xue, Chenxi Hu, Ruru Xu, Ilkay Oksuz, Donghang Lyu, Yanxin Huang, Xinrui Guo, Ruqian Hao, Jaykumar H. Patel, Guanke Cai, Binghua Chen, Yajing Zhang, Sha Hua, Zhensen Chen, Qi Dou, Xiahai Zhuang, Qian Tao, Wenjia Bai, Jing Qin, He Wang, Claudia Prieto, Michael Markl, Alistair Young, Hao Li, Xihong Hu, Lianmin Wu, Xiaobo Qu, Guang Yang, Chengyan Wang
In addition, through a detailed analysis of the results submitted to the challenge, we have also made several findings, including: 1) adaptive prompt-learning embedding is an effective means for achieving strong generalization in reconstruction models; 2) enhanced data consistency based on physics-informed networks is also an effective pathway toward a universal model; 3) traditional evaluation metrics have limitations when assessing ground-truth references with moderate or lower image quality, highlighting the need for subjective evaluation methods.
no code implementations • 28 Jan 2025 • Andreas Kofler, Dongyue Si, David Schote, Rene M Botnar, Christoph Kolbitsch, Claudia Prieto
Recent innovations in Magnetic Resonance Imaging (MRI) hardware and software have reignited interest in low-field ($<1\,\mathrm{T}$) and ultra-low-field MRI ($<0. 1\,\mathrm{T}$).
no code implementations • 16 Jan 2025 • Veronika Spieker, Hannah Eichhorn, Wenqi Huang, Jonathan K. Stelter, Tabita Catalan, Rickmer F. Braren, Daniel Rueckert, Francisco Sahli Costabal, Kerstin Hammernik, Dimitrios C. Karampinos, Claudia Prieto, Julia A. Schnabel
Neural implicit k-space representations (NIK) have shown promising results for dynamic magnetic resonance imaging (MRI) at high temporal resolutions.
no code implementations • 17 Dec 2024 • Wenqi Huang, Veronika Spieker, Siying Xu, Gastao Cruz, Claudia Prieto, Julia Schnabel, Kerstin Hammernik, Thomas Kuestner, Daniel Rueckert
Conventional cardiac cine MRI methods rely on retrospective gating, which limits temporal resolution and the ability to capture continuous cardiac dynamics, particularly in patients with arrhythmias and beat-to-beat variations.
1 code implementation • 27 Jun 2024 • Zi Wang, Fanwen Wang, Chen Qin, Jun Lyu, Cheng Ouyang, Shuo Wang, Yan Li, Mengyao Yu, Haoyu Zhang, Kunyuan Guo, Zhang Shi, Qirong Li, Ziqiang Xu, Yajing Zhang, Hao Li, Sha Hua, Binghua Chen, Longyu Sun, Mengting Sun, Qin Li, Ying-Hua Chu, Wenjia Bai, Jing Qin, Xiahai Zhuang, Claudia Prieto, Alistair Young, Michael Markl, He Wang, Lianming Wu, Guang Yang, Xiaobo Qu, Chengyan Wang
To the best of our knowledge, the CMRxRecon2024 dataset is the largest and most protocal-diverse publicly available cardiac k-space dataset.
1 code implementation • 12 Apr 2024 • Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel
Neural implicit k-space representations have shown promising results for dynamic MRI at high temporal resolutions.
no code implementations • 24 Jul 2023 • Tabita Catalán, Matías Courdurier, Axel Osses, René Botnar, Francisco Sahli Costabal, Claudia Prieto
Cardiac cine MRI is the gold standard for cardiac functional assessment, but the inherently slow acquisition process creates the necessity of reconstruction approaches for accelerated undersampled acquisitions.
no code implementations • 2 May 2022 • Inês P. Machado, Esther Puyol-Antón, Kerstin Hammernik, Gastão Cruz, Devran Ugurlu, Ihsane Olakorede, Ilkay Oksuz, Bram Ruijsink, Miguel Castelo-Branco, Alistair A. Young, Claudia Prieto, Julia A. Schnabel, Andrew P. King
Cine cardiac magnetic resonance (CMR) imaging is considered the gold standard for cardiac function evaluation.
no code implementations • 16 Sep 2021 • Ines Machado, Esther Puyol-Anton, Kerstin Hammernik, Gastao Cruz, Devran Ugurlu, Bram Ruijsink, Miguel Castelo-Branco, Alistair Young, Claudia Prieto, Julia A. Schnabel, Andrew P. King
The framework consists of a deep learning model for the reconstruction of 2D+t cardiac cine MRI images from undersampled data, an image quality-control step to detect good quality reconstructions, followed by a deep learning model for bi-ventricular segmentation, a quality-control step to detect good quality segmentations and automated calculation of cardiac functional parameters.
1 code implementation • 19 Jul 2021 • Thomas Küstner, Jiazhen Pan, Haikun Qi, Gastao Cruz, Christopher Gilliam, Thierry Blu, Bin Yang, Sergios Gatidis, René Botnar, Claudia Prieto
Physiological motion, such as cardiac and respiratory motion, during Magnetic Resonance (MR) image acquisition can cause image artifacts.
1 code implementation • 22 Dec 2020 • Chen Qin, Jinming Duan, Kerstin Hammernik, Jo Schlemper, Thomas Küstner, René Botnar, Claudia Prieto, Anthony N. Price, Joseph V. Hajnal, Daniel Rueckert
The iterative model is embedded into a deep recurrent neural network which learns to recover the image via exploiting spatio-temporal redundancies in complementary domains.
no code implementations • 2 Dec 2020 • Refik Soyak, Ebru Navruz, Eda Ozgu Ersoy, Gastao Cruz, Claudia Prieto, Andrew P. King, Devrim Unay, Ilkay Oksuz
Magnetic Resonance Fingerprinting (MRF) enables simultaneous mapping of multiple tissue parameters such as T1 and T2 relaxation times.
no code implementations • 20 Oct 2020 • Pablo Messina, Pablo Pino, Denis Parra, Alvaro Soto, Cecilia Besa, Sergio Uribe, Marcelo andía, Cristian Tejos, Claudia Prieto, Daniel Capurro
Every year physicians face an increasing demand of image-based diagnosis from patients, a problem that can be addressed with recent artificial intelligence methods.
no code implementations • 11 Oct 2019 • Ilkay Oksuz, James R. Clough, Bram Ruijsink, Esther Puyol Anton, Aurelien Bustin, Gastao Cruz, Claudia Prieto, Andrew P. King, Julia A. Schnabel
In this paper, we discuss the implications of image motion artefacts on cardiac MR segmentation and compare a variety of approaches for jointly correcting for artefacts and segmenting the cardiac cavity.
no code implementations • 12 Jun 2019 • lkay Oksuz, James Clough, Bram Ruijsink, Esther Puyol-Anton, Aurelien Bustin, Gastao Cruz, Claudia Prieto, Daniel Rueckert, Andrew P. King, Julia A. Schnabel
In this paper, we propose a method to automatically detect and correct motion-related artefacts in CMR acquisitions during reconstruction from k-space data.
no code implementations • 19 Dec 2018 • Ilkay Oksuz, Gastao Cruz, James Clough, Aurelien Bustin, Nicolo Fuin, Rene M. Botnar, Claudia Prieto, Andrew P. King, Julia A. Schnabel
Magnetic Resonance Fingerprinting (MRF) is a new approach to quantitative magnetic resonance imaging that allows simultaneous measurement of multiple tissue properties in a single, time-efficient acquisition.
no code implementations • 29 Oct 2018 • Ilkay Oksuz, Bram Ruijsink, Esther Puyol-Anton, James Clough, Gastao Cruz, Aurelien Bustin, Claudia Prieto, Rene Botnar, Daniel Rueckert, Julia A. Schnabel, Andrew P. King
Due to the high number of good quality images compared to the relatively low number of images with motion artefacts, we propose a novel data augmentation scheme based on synthetic artefact creation in k-space.
no code implementations • 15 Aug 2018 • Ilkay Oksuz, Bram Ruijsink, Esther Puyol-Anton, Aurelien Bustin, Gastao Cruz, Claudia Prieto, Daniel Rueckert, Julia A. Schnabel, Andrew P. King
As this is a highly imbalanced classification problem (due to the high number of good quality images compared to the low number of images with motion artefacts), we propose a novel k-space based training data augmentation approach in order to address this problem.