Search Results for author: Claudia Prieto

Found 18 papers, 5 papers with code

Towards Universal Learning-based Model for Cardiac Image Reconstruction: Summary of the CMRxRecon2024 Challenge

1 code implementation5 Mar 2025 Fanwen Wang, Zi Wang, Yan Li, Jun Lyu, Chen Qin, Shuo Wang, Kunyuan Guo, Mengting Sun, Mingkai Huang, Haoyu Zhang, Michael Tänzer, Qirong Li, Xinran Chen, Jiahao Huang, Yinzhe Wu, Kian Anvari Hamedani, Yuntong Lyu, Longyu Sun, Qing Li, Ziqiang Xu, Bingyu Xin, Dimitris N. Metaxas, Narges Razizadeh, Shahabedin Nabavi, George Yiasemis, Jonas Teuwen, Zhenxi Zhang, Sha Wang, Chi Zhang, Daniel B. Ennis, Zhihao Xue, Chenxi Hu, Ruru Xu, Ilkay Oksuz, Donghang Lyu, Yanxin Huang, Xinrui Guo, Ruqian Hao, Jaykumar H. Patel, Guanke Cai, Binghua Chen, Yajing Zhang, Sha Hua, Zhensen Chen, Qi Dou, Xiahai Zhuang, Qian Tao, Wenjia Bai, Jing Qin, He Wang, Claudia Prieto, Michael Markl, Alistair Young, Hao Li, Xihong Hu, Lianmin Wu, Xiaobo Qu, Guang Yang, Chengyan Wang

In addition, through a detailed analysis of the results submitted to the challenge, we have also made several findings, including: 1) adaptive prompt-learning embedding is an effective means for achieving strong generalization in reconstruction models; 2) enhanced data consistency based on physics-informed networks is also an effective pathway toward a universal model; 3) traditional evaluation metrics have limitations when assessing ground-truth references with moderate or lower image quality, highlighting the need for subjective evaluation methods.

Benchmarking Image Reconstruction +3

MR imaging in the low-field: Leveraging the power of machine learning

no code implementations28 Jan 2025 Andreas Kofler, Dongyue Si, David Schote, Rene M Botnar, Christoph Kolbitsch, Claudia Prieto

Recent innovations in Magnetic Resonance Imaging (MRI) hardware and software have reignited interest in low-field ($<1\,\mathrm{T}$) and ultra-low-field MRI ($<0. 1\,\mathrm{T}$).

Denoising Image Reconstruction +1

Subspace Implicit Neural Representations for Real-Time Cardiac Cine MR Imaging

no code implementations17 Dec 2024 Wenqi Huang, Veronika Spieker, Siying Xu, Gastao Cruz, Claudia Prieto, Julia Schnabel, Kerstin Hammernik, Thomas Kuestner, Daniel Rueckert

Conventional cardiac cine MRI methods rely on retrospective gating, which limits temporal resolution and the ability to capture continuous cardiac dynamics, particularly in patients with arrhythmias and beat-to-beat variations.

Diagnostic

Unsupervised reconstruction of accelerated cardiac cine MRI using Neural Fields

no code implementations24 Jul 2023 Tabita Catalán, Matías Courdurier, Axel Osses, René Botnar, Francisco Sahli Costabal, Claudia Prieto

Cardiac cine MRI is the gold standard for cardiac functional assessment, but the inherently slow acquisition process creates the necessity of reconstruction approaches for accelerated undersampled acquisitions.

Quality-aware Cine Cardiac MRI Reconstruction and Analysis from Undersampled k-space Data

no code implementations16 Sep 2021 Ines Machado, Esther Puyol-Anton, Kerstin Hammernik, Gastao Cruz, Devran Ugurlu, Bram Ruijsink, Miguel Castelo-Branco, Alistair Young, Claudia Prieto, Julia A. Schnabel, Andrew P. King

The framework consists of a deep learning model for the reconstruction of 2D+t cardiac cine MRI images from undersampled data, an image quality-control step to detect good quality reconstructions, followed by a deep learning model for bi-ventricular segmentation, a quality-control step to detect good quality segmentations and automated calculation of cardiac functional parameters.

Diagnostic MRI Reconstruction

Complementary Time-Frequency Domain Networks for Dynamic Parallel MR Image Reconstruction

1 code implementation22 Dec 2020 Chen Qin, Jinming Duan, Kerstin Hammernik, Jo Schlemper, Thomas Küstner, René Botnar, Claudia Prieto, Anthony N. Price, Joseph V. Hajnal, Daniel Rueckert

The iterative model is embedded into a deep recurrent neural network which learns to recover the image via exploiting spatio-temporal redundancies in complementary domains.

De-aliasing Image Reconstruction

A Survey on Deep Learning and Explainability for Automatic Report Generation from Medical Images

no code implementations20 Oct 2020 Pablo Messina, Pablo Pino, Denis Parra, Alvaro Soto, Cecilia Besa, Sergio Uribe, Marcelo andía, Cristian Tejos, Claudia Prieto, Daniel Capurro

Every year physicians face an increasing demand of image-based diagnosis from patients, a problem that can be addressed with recent artificial intelligence methods.

Medical Report Generation Survey

Deep Learning Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation

no code implementations11 Oct 2019 Ilkay Oksuz, James R. Clough, Bram Ruijsink, Esther Puyol Anton, Aurelien Bustin, Gastao Cruz, Claudia Prieto, Andrew P. King, Julia A. Schnabel

In this paper, we discuss the implications of image motion artefacts on cardiac MR segmentation and compare a variety of approaches for jointly correcting for artefacts and segmenting the cardiac cavity.

Image Reconstruction Image Segmentation +3

Magnetic Resonance Fingerprinting using Recurrent Neural Networks

no code implementations19 Dec 2018 Ilkay Oksuz, Gastao Cruz, James Clough, Aurelien Bustin, Nicolo Fuin, Rene M. Botnar, Claudia Prieto, Andrew P. King, Julia A. Schnabel

Magnetic Resonance Fingerprinting (MRF) is a new approach to quantitative magnetic resonance imaging that allows simultaneous measurement of multiple tissue properties in a single, time-efficient acquisition.

Magnetic Resonance Fingerprinting

Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning

no code implementations29 Oct 2018 Ilkay Oksuz, Bram Ruijsink, Esther Puyol-Anton, James Clough, Gastao Cruz, Aurelien Bustin, Claudia Prieto, Rene Botnar, Daniel Rueckert, Julia A. Schnabel, Andrew P. King

Due to the high number of good quality images compared to the relatively low number of images with motion artefacts, we propose a novel data augmentation scheme based on synthetic artefact creation in k-space.

Data Augmentation General Classification +2

Deep Learning using K-space Based Data Augmentation for Automated Cardiac MR Motion Artefact Detection

no code implementations15 Aug 2018 Ilkay Oksuz, Bram Ruijsink, Esther Puyol-Anton, Aurelien Bustin, Gastao Cruz, Claudia Prieto, Daniel Rueckert, Julia A. Schnabel, Andrew P. King

As this is a highly imbalanced classification problem (due to the high number of good quality images compared to the low number of images with motion artefacts), we propose a novel k-space based training data augmentation approach in order to address this problem.

Data Augmentation Image Quality Assessment +1

Cannot find the paper you are looking for? You can Submit a new open access paper.