Search Results for author: Clinton Fookes

Found 124 papers, 26 papers with code

AI and Entrepreneurship: Facial Recognition Technology Detects Entrepreneurs, Outperforming Human Experts

no code implementations19 Aug 2024 Martin Obschonka, Christian Fisch, Tharindu Fernando, Clinton Fookes

In this study, we demonstrate that deep neural networks can classify individuals as entrepreneurs based on a single facial image with high accuracy in data sourced from Crunchbase, a premier source for entrepreneurship data.

PINNs for Medical Image Analysis: A Survey

no code implementations2 Aug 2024 Chayan Banerjee, Kien Nguyen, Olivier Salvado, Truyen Tran, Clinton Fookes

We delve deep into a wide range of image analysis tasks, from imaging, generation, prediction, inverse imaging (super-resolution and reconstruction), registration, and image analysis (segmentation and classification).

Anatomy Benchmarking +1

SALVE: A 3D Reconstruction Benchmark of Wounds from Consumer-grade Videos

no code implementations29 Jul 2024 Remi Chierchia, Leo Lebrat, David Ahmedt-Aristizabal, Olivier Salvado, Clinton Fookes, Rodrigo Santa Cruz

Using this dataset, we assess the accuracy and precision of state-of-the-art methods for 3D reconstruction, ranging from traditional photogrammetry pipelines to advanced neural rendering approaches.

3D Reconstruction Neural Rendering

Enhancing Semantic Segmentation with Adaptive Focal Loss: A Novel Approach

no code implementations13 Jul 2024 Md Rakibul Islam, Riad Hassan, Abdullah Nazib, Kien Nguyen, Clinton Fookes, Md Zahidul Islam

Deep learning has achieved outstanding accuracy in medical image segmentation, particularly for objects like organs or tumors with smooth boundaries or large sizes.

Image Segmentation Medical Image Segmentation +2

Part-based Quantitative Analysis for Heatmaps

no code implementations22 May 2024 Osman Tursun, Sinan Kalkan, Simon Denman, Sridha Sridharan, Clinton Fookes

Heatmaps have been instrumental in helping understand deep network decisions, and are a common approach for Explainable AI (XAI).

Informativeness

Automatic Radar Signal Detection and FFT Estimation using Deep Learning

no code implementations29 Feb 2024 Akila Pemasiri, Zi Huang, Fraser Williams, Ethan Goan, Simon Denman, Terrence Martin, Clinton Fookes

This paper addresses a critical preliminary step in radar signal processing: detecting the presence of a radar signal and robustly estimating its bandwidth.

Binary Classification

Divide and Conquer: Rethinking the Training Paradigm of Neural Radiance Fields

no code implementations29 Jan 2024 Rongkai Ma, Leo Lebrat, Rodrigo Santa Cruz, Gil Avraham, Yan Zuo, Clinton Fookes, Olivier Salvado

Neural radiance fields (NeRFs) have exhibited potential in synthesizing high-fidelity views of 3D scenes but the standard training paradigm of NeRF presupposes an equal importance for each image in the training set.

Zoom-shot: Fast and Efficient Unsupervised Zero-Shot Transfer of CLIP to Vision Encoders with Multimodal Loss

no code implementations22 Jan 2024 Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang, Clinton Fookes

To address this issue, we propose Zoom-shot, a novel method for transferring the zero-shot capabilities of CLIP to any pre-trained vision encoder.

Knowledge Distillation Zero-Shot Learning

AG-ReID.v2: Bridging Aerial and Ground Views for Person Re-identification

1 code implementation5 Jan 2024 Huy Nguyen, Kien Nguyen, Sridha Sridharan, Clinton Fookes

To address this, we introduce AG-ReID. v2, a dataset specifically designed for person Re-ID in mixed aerial and ground scenarios.

Attribute Person Re-Identification

Deep Learning Approaches for Seizure Video Analysis: A Review

no code implementations18 Dec 2023 David Ahmedt-Aristizabal, Mohammad Ali Armin, Zeeshan Hayder, Norberto Garcia-Cairasco, Lars Petersson, Clinton Fookes, Simon Denman, Aileen McGonigal

Historically, these approaches have been used for disease detection, classification, and prediction using diagnostic data; however, there has been limited exploration of their application in evaluating video-based motion detection in the clinical epileptology setting.

Decision Making Motion Detection +1

SafeSea: Synthetic Data Generation for Adverse & Low Probability Maritime Conditions

1 code implementation24 Nov 2023 Martin Tran, Jordan Shipard, Hermawan Mulyono, Arnold Wiliem, Clinton Fookes

Lastly, we observed that a maritime object detection model faced challenges in detecting objects in stormy sea backgrounds, emphasizing the impact of weather conditions on detection accuracy.

object-detection Object Detection +1

FactoFormer: Factorized Hyperspectral Transformers with Self-Supervised Pretraining

1 code implementation18 Sep 2023 Shaheer Mohamed, Maryam Haghighat, Tharindu Fernando, Sridha Sridharan, Clinton Fookes, Peyman Moghadam

However, current state-of-the-art hyperspectral transformers only tokenize the input HSI sample along the spectral dimension, resulting in the under-utilization of spatial information.

A Survey on Physics Informed Reinforcement Learning: Review and Open Problems

no code implementations5 Sep 2023 Chayan Banerjee, Kien Nguyen, Clinton Fookes, Maziar Raissi

We present a thorough review of the literature on incorporating physics information, as known as physics priors, in reinforcement learning approaches, commonly referred to as physics-informed reinforcement learning (PIRL).

reinforcement-learning

Learning Through Guidance: Knowledge Distillation for Endoscopic Image Classification

no code implementations17 Aug 2023 Harshala Gammulle, Yubo Chen, Sridha Sridharan, Travis Klein, Clinton Fookes

However, there is a lack of focus on developing lightweight models which can run in low-resource environments, which are typically encountered in medical clinics.

Classification Feature Engineering +3

GeoAdapt: Self-Supervised Test-Time Adaptation in LiDAR Place Recognition Using Geometric Priors

no code implementations9 Aug 2023 Joshua Knights, Stephen Hausler, Sridha Sridharan, Clinton Fookes, Peyman Moghadam

LiDAR place recognition approaches based on deep learning suffer from significant performance degradation when there is a shift between the distribution of training and test datasets, often requiring re-training the networks to achieve peak performance.

Test-time Adaptation

General-Purpose Multimodal Transformer meets Remote Sensing Semantic Segmentation

1 code implementation7 Jul 2023 Nhi Kieu, Kien Nguyen, Sridha Sridharan, Clinton Fookes

In this work, we investigate the performance of PerceiverIO, one in the general-purpose multimodal family, in the remote sensing semantic segmentation domain.

Earth Observation Semantic Segmentation

Multi-task Learning for Radar Signal Characterisation

1 code implementation19 Jun 2023 Zi Huang, Akila Pemasiri, Simon Denman, Clinton Fookes, Terrence Martin

Radio signal recognition is a crucial task in both civilian and military applications, as accurate and timely identification of unknown signals is an essential part of spectrum management and electronic warfare.

Classification Management +1

Physics-Informed Computer Vision: A Review and Perspectives

no code implementations29 May 2023 Chayan Banerjee, Kien Nguyen, Clinton Fookes, George Karniadakis

The incorporation of physical information in machine learning frameworks is opening and transforming many application domains.

Inductive Bias Physics-informed machine learning

Physical Adversarial Attacks for Surveillance: A Survey

no code implementations1 May 2023 Kien Nguyen, Tharindu Fernando, Clinton Fookes, Sridha Sridharan

In particular, we propose a framework to analyze physical adversarial attacks and provide a comprehensive survey of physical adversarial attacks on four key surveillance tasks: detection, identification, tracking, and action recognition under this framework.

Action Recognition

Towards Self-Explainability of Deep Neural Networks with Heatmap Captioning and Large-Language Models

no code implementations5 Apr 2023 Osman Tursun, Simon Denman, Sridha Sridharan, Clinton Fookes

We proposed a template-based image captioning approach for context modelling to create text-based contextual information from the heatmap and input data.

Explainable Artificial Intelligence (XAI) Image Captioning +2

Aerial-Ground Person Re-ID

1 code implementation15 Mar 2023 Huy Nguyen, Kien Nguyen, Sridha Sridharan, Clinton Fookes

Our dataset presents a novel elevated-viewpoint challenge for person re-ID due to the significant difference in person appearance across these cameras.

Video-Based Person Re-Identification

Piecewise Deterministic Markov Processes for Bayesian Neural Networks

2 code implementations17 Feb 2023 Ethan Goan, Dimitri Perrin, Kerrie Mengersen, Clinton Fookes

Inference on modern Bayesian Neural Networks (BNNs) often relies on a variational inference treatment, imposing violated assumptions of independence and the form of the posterior.

Variational Inference

Diversity is Definitely Needed: Improving Model-Agnostic Zero-shot Classification via Stable Diffusion

1 code implementation7 Feb 2023 Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang, Clinton Fookes

In this work, we investigate the problem of Model-Agnostic Zero-Shot Classification (MA-ZSC), which refers to training non-specific classification architectures (downstream models) to classify real images without using any real images during training.

Classification Diversity +2

FICE: Text-Conditioned Fashion Image Editing With Guided GAN Inversion

1 code implementation5 Jan 2023 Martin Pernuš, Clinton Fookes, Vitomir Štruc, Simon Dobrišek

We address these constraints by proposing a novel text-conditioned editing model, called FICE (Fashion Image CLIP Editing), capable of handling a wide variety of diverse text descriptions to guide the editing procedure.

Attribute Virtual Try-on

Uncertainty in Real-Time Semantic Segmentation on Embedded Systems

2 code implementations20 Dec 2022 Ethan Goan, Clinton Fookes

Application for semantic segmentation models in areas such as autonomous vehicles and human computer interaction require real-time predictive capabilities.

Autonomous Vehicles Real-Time Semantic Segmentation +1

Using Auxiliary Information for Person Re-Identification -- A Tutorial Overview

no code implementations15 Nov 2022 Tharindu Fernando, Clinton Fookes, Sridha Sridharan, Dana Michalski

Person re-identification (re-id) is a pivotal task within an intelligent surveillance pipeline and there exist numerous re-id frameworks that achieve satisfactory performance in challenging benchmarks.

Person Re-Identification

Spectral Geometric Verification: Re-Ranking Point Cloud Retrieval for Metric Localization

1 code implementation10 Oct 2022 Kavisha Vidanapathirana, Peyman Moghadam, Sridha Sridharan, Clinton Fookes

We demonstrate how the optimal inter-cluster score of the correspondence compatibility graph of two point clouds represents a robust fitness score measuring their spatial consistency.

Point Cloud Registration Point Cloud Retrieval +3

SESS: Saliency Enhancing with Scaling and Sliding

1 code implementation5 Jul 2022 Osman Tursun, Simon Denman, Sridha Sridharan, Clinton Fookes

High-quality saliency maps are essential in several machine learning application areas including explainable AI and weakly supervised object detection and segmentation.

Explainable artificial intelligence Object Recognition +2

CorticalFlow$^{++}$: Boosting Cortical Surface Reconstruction Accuracy, Regularity, and Interoperability

no code implementations14 Jun 2022 Rodrigo Santa Cruz, Léo Lebrat, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado

Using the state-of-the-art CorticalFlow model as a blueprint, this paper proposes three modifications to improve its accuracy and interoperability with existing surface analysis tools, while not sacrificing its fast inference time and low GPU memory consumption.

Surface Reconstruction

CorticalFlow: A Diffeomorphic Mesh Deformation Module for Cortical Surface Reconstruction

no code implementations6 Jun 2022 Léo Lebrat, Rodrigo Santa Cruz, Frédéric de Gournay, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado

In this paper we introduce CorticalFlow, a new geometric deep-learning model that, given a 3-dimensional image, learns to deform a reference template towards a targeted object.

Surface Reconstruction

Does Interference Exist When Training a Once-For-All Network?

1 code implementation20 Apr 2022 Jordan Shipard, Arnold Wiliem, Clinton Fookes

To show this, we propose a simple-yet-effective method called Random Subnet Sampling (RSS), which does not have mitigation on the interference effect.

Selection bias

Towards On-Board Panoptic Segmentation of Multispectral Satellite Images

no code implementations5 Apr 2022 Tharindu Fernando, Clinton Fookes, Harshala Gammulle, Simon Denman, Sridha Sridharan

To address this challenge, we propose a multimodal teacher network based on a cross-modality attention-based fusion strategy to improve the segmentation accuracy by exploiting data from multiple modes.

Knowledge Distillation Panoptic Segmentation +1

Learning Dense Correspondence from Synthetic Environments

no code implementations24 Mar 2022 Mithun Lal, Anthony Paproki, Nariman Habili, Lars Petersson, Olivier Salvado, Clinton Fookes

Results show that training 2D-3D mapping network models on synthetic data is a viable alternative to using real data.

InCloud: Incremental Learning for Point Cloud Place Recognition

2 code implementations2 Mar 2022 Joshua Knights, Peyman Moghadam, Milad Ramezani, Sridha Sridharan, Clinton Fookes

In this paper we address the problem of incremental learning for point cloud place recognition and introduce InCloud, a structure-aware distillation-based approach which preserves the higher-order structure of the network's embedding space.

Incremental Learning

Continuous Human Action Recognition for Human-Machine Interaction: A Review

no code implementations26 Feb 2022 Harshala Gammulle, David Ahmedt-Aristizabal, Simon Denman, Lachlan Tychsen-Smith, Lars Petersson, Clinton Fookes

With advances in data-driven machine learning research, a wide variety of prediction models have been proposed to capture spatio-temporal features for the analysis of video streams.

Action Recognition Action Segmentation +4

The State of Aerial Surveillance: A Survey

no code implementations9 Jan 2022 Kien Nguyen, Clinton Fookes, Sridha Sridharan, YingLi Tian, Feng Liu, Xiaoming Liu, Arun Ross

The rapid emergence of airborne platforms and imaging sensors are enabling new forms of aerial surveillance due to their unprecedented advantages in scale, mobility, deployment and covert observation capabilities.

Point Cloud Segmentation Using Sparse Temporal Local Attention

no code implementations1 Dec 2021 Joshua Knights, Peyman Moghadam, Clinton Fookes, Sridha Sridharan

Point clouds are a key modality used for perception in autonomous vehicles, providing the means for a robust geometric understanding of the surrounding environment.

Autonomous Vehicles Decoder +1

CorticalFlow: A Diffeomorphic Mesh Transformer Network for Cortical Surface Reconstruction

1 code implementation NeurIPS 2021 Leo Lebrat, Rodrigo Santa Cruz, Frederic de Gournay, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado

In this paper, we introduce CorticalFlow, a new geometric deep-learning model that, given a 3-dimensional image, learns to deform a reference template towards a targeted object.

Surface Reconstruction

LoGG3D-Net: Locally Guided Global Descriptor Learning for 3D Place Recognition

1 code implementation17 Sep 2021 Kavisha Vidanapathirana, Milad Ramezani, Peyman Moghadam, Sridha Sridharan, Clinton Fookes

Experiments on two large-scale public benchmarks (KITTI and MulRan) show that our method achieves mean $F1_{max}$ scores of $0. 939$ and $0. 968$ on KITTI and MulRan respectively, achieving state-of-the-art performance while operating in near real-time.

3D Place Recognition Retrieval +1

Discriminative Domain-Invariant Adversarial Network for Deep Domain Generalization

no code implementations20 Aug 2021 Mohammad Mahfujur Rahman, Clinton Fookes, Sridha Sridharan

Domain generalization approaches aim to learn a domain invariant prediction model for unknown target domains from multiple training source domains with different distributions.

Domain Generalization

A Survey on Graph-Based Deep Learning for Computational Histopathology

no code implementations1 Jul 2021 David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, Lars Petersson

With the remarkable success of representation learning for prediction problems, we have witnessed a rapid expansion of the use of machine learning and deep learning for the analysis of digital pathology and biopsy image patches.

graph construction Image Retrieval +4

MongeNet: Efficient Sampler for Geometric Deep Learning

1 code implementation CVPR 2021 Léo Lebrat, Rodrigo Santa Cruz, Clinton Fookes, Olivier Salvado

Recent advances in geometric deep-learning introduce complex computational challenges for evaluating the distance between meshes.

Deep Domain Generalization with Feature-norm Network

no code implementations28 Apr 2021 Mohammad Mahfujur Rahman, Clinton Fookes, Sridha Sridharan

To tackle the aforementioned problem, we introduce an end-to-end feature-norm network (FNN) which is robust to negative transfer as it does not need to match the feature distribution among the source domains.

Domain Generalization Image Classification

Preserving Semantic Consistency in Unsupervised Domain Adaptation Using Generative Adversarial Networks

no code implementations28 Apr 2021 Mohammad Mahfujur Rahman, Clinton Fookes, Sridha Sridharan

This network can achieve source to target domain matching by capturing semantic information at the feature level and producing images for unsupervised domain adaptation from both the source and the target domains.

Generative Adversarial Network Unsupervised Domain Adaptation

Pose-driven Attention-guided Image Generation for Person Re-Identification

no code implementations28 Apr 2021 Amena Khatun, Simon Denman, Sridha Sridharan, Clinton Fookes

Person re-identification (re-ID) concerns the matching of subject images across different camera views in a multi camera surveillance system.

Generative Adversarial Network Person Re-Identification +2

Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification

no code implementations28 Apr 2021 Amena Khatun, Simon Denman, Sridha Sridharan, Clinton Fookes

In a real world environment, person re-identification (Re-ID) is a challenging task due to variations in lighting conditions, viewing angles, pose and occlusions.

Generative Adversarial Network Person Re-Identification

Learning Regional Attention over Multi-resolution Deep Convolutional Features for Trademark Retrieval

no code implementations15 Apr 2021 Osman Tursun, Simon Denman, Sridha Sridharan, Clinton Fookes

However, R-MAC suffers in the presence of background clutter/trivial regions and scale variance, and discards important spatial information.

Content-Based Image Retrieval Retrieval +1

An Efficient Framework for Zero-Shot Sketch-Based Image Retrieval

no code implementations8 Feb 2021 Osman Tursun, Simon Denman, Sridha Sridharan, Ethan Goan, Clinton Fookes

Recently, Zero-shot Sketch-based Image Retrieval (ZS-SBIR) has attracted the attention of the computer vision community due to it's real-world applications, and the more realistic and challenging setting than found in SBIR.

Content-Based Image Retrieval Domain Adaptation +5

Deep Learning for Medical Anomaly Detection -- A Survey

no code implementations4 Dec 2020 Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

Machine learning-based medical anomaly detection is an important problem that has been extensively studied.

Anomaly Detection

Complex-valued Iris Recognition Network

no code implementations23 Nov 2020 Kien Nguyen, Clinton Fookes, Sridha Sridharan, Arun Ross

Unlike the problem of general object recognition, where real-valued neural networks can be used to extract pertinent features, iris recognition depends on the extraction of both phase and magnitude information from the input iris texture in order to better represent its biometric content.

Iris Recognition Object Recognition

Patient-independent Epileptic Seizure Prediction using Deep Learning Models

no code implementations18 Nov 2020 Theekshana Dissanayake, Tharindu Fernando, Simon Denman, Sridha Sridharan, Clinton Fookes

Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset, and have been identified as a real-world solution to the seizure prediction problem.

EEG Seizure prediction

Domain Generalization in Biosignal Classification

no code implementations12 Nov 2020 Theekshana Dissanayake, Tharindu Fernando, Simon Denman, Houman Ghaemmaghami, Sridha Sridharan, Clinton Fookes

Conclusion: Recognizing the complexity induced by the inherent temporal nature of biosignal data, the two-stage method proposed in this study is able to effectively simplify the whole process of domain generalization while demonstrating good results on unseen domains and the adopted basis domains.

Classification Domain Generalization +1

Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers

no code implementations10 Nov 2020 Tharindu Fernando, Simon Denman, Sridha Sridharan, Clinton Fookes

In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.

Meta-Learning Retrieval

Multi-modal Fusion for Single-Stage Continuous Gesture Recognition

no code implementations10 Nov 2020 Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

Gesture recognition is a much studied research area which has myriad real-world applications including robotics and human-machine interaction.

Gesture Recognition

DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction

no code implementations22 Oct 2020 Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Clinton Fookes, Jurgen Fripp, Olivier Salvado

Having these limitations in mind, we propose DeepCSR, a 3D deep learning framework for cortical surface reconstruction from MRI.

Surface Reconstruction

Attention Driven Fusion for Multi-Modal Emotion Recognition

no code implementations23 Sep 2020 Darshana Priyasad, Tharindu Fernando, Simon Denman, Clinton Fookes, Sridha Sridharan

In this paper, we present a deep learning-based approach to exploit and fuse text and acoustic data for emotion classification.

Emotion Classification Emotion Recognition

Memory based fusion for multi-modal deep learning

no code implementations16 Jul 2020 Darshana Priyasad, Tharindu Fernando, Simon Denman, Sridha Sridharan, Clinton Fookes

The use of multi-modal data for deep machine learning has shown promise when compared to uni-modal approaches with fusion of multi-modal features resulting in improved performance in several applications.

Two-Stream Deep Feature Modelling for Automated Video Endoscopy Data Analysis

no code implementations12 Jul 2020 Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

Automating the analysis of imagery of the Gastrointestinal (GI) tract captured during endoscopy procedures has substantial potential benefits for patients, as it can provide diagnostic support to medical practitioners and reduce mistakes via human error.

Vocal Bursts Valence Prediction

Bayesian Neural Networks: An Introduction and Survey

no code implementations22 Jun 2020 Ethan Goan, Clinton Fookes

Neural Networks (NNs) have provided state-of-the-art results for many challenging machine learning tasks such as detection, regression and classification across the domains of computer vision, speech recognition and natural language processing.

BIG-bench Machine Learning regression +2

A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation

no code implementations21 May 2020 Theekshana Dissanayake, Tharindu Fernando, Simon Denman, Sridha Sridharan, Houman Ghaemmaghami, Clinton Fookes

In this study, we explicitly examine the importance of heart sound segmentation as a prior step for heart sound classification, and then seek to apply the obtained insights to propose a robust classifier for abnormal heart sound detection.

Anomaly Detection Classification +4

Hierarchical Attention Network for Action Segmentation

no code implementations7 May 2020 Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

The temporal segmentation of events is an essential task and a precursor for the automatic recognition of human actions in the video.

Action Segmentation Segmentation

End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification

no code implementations7 May 2020 Amena Khatun, Simon Denman, Sridha Sridharan, Clinton Fookes

Person re-identification (re-ID) remains challenging in a real-world scenario, as it requires a trained network to generalise to totally unseen target data in the presence of variations across domains.

Diversity Person Re-Identification +1

Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition

no code implementations28 Apr 2020 Dung Nguyen, Duc Thanh Nguyen, Rui Zeng, Thanh Thi Nguyen, Son N. Tran, Thin Nguyen, Sridha Sridharan, Clinton Fookes

Multimodal dimensional emotion recognition has drawn a great attention from the affective computing community and numerous schemes have been extensively investigated, making a significant progress in this area.

Emotion Recognition

Heart Sound Segmentation using Bidirectional LSTMs with Attention

no code implementations2 Apr 2020 Tharindu Fernando, Houman Ghaemmaghami, Simon Denman, Sridha Sridharan, Nayyar Hussain, Clinton Fookes

This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart state.

Segmentation

A Multiple Decoder CNN for Inverse Consistent 3D Image Registration

no code implementations15 Feb 2020 Abdullah Nazib, Clinton Fookes, Olivier Salvado, Dimitri Perrin

The recent application of deep learning technologies in medical image registration has exponentially decreased the registration time and gradually increased registration accuracy when compared to their traditional counterparts.

Decoder Image Registration +1

Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach

no code implementations17 Jan 2020 Chanoh Park, Peyman Moghadam, Soohwan Kim, Sridha Sridharan, Clinton Fookes

The demand for multimodal sensing systems for robotics is growing due to the increase in robustness, reliability and accuracy offered by these systems.

MTRNet++: One-stage Mask-based Scene Text Eraser

1 code implementation16 Dec 2019 Osman Tursun, Simon Denman, Rui Zeng, Sabesan Sivapalan, Sridha Sridharan, Clinton Fookes

The results of ablation studies demonstrate that the proposed multi-branch architecture with attention blocks is effective and essential.

Predicting the Future: A Jointly Learnt Model for Action Anticipation

no code implementations ICCV 2019 Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

Inspired by human neurological structures for action anticipation, we present an action anticipation model that enables the prediction of plausible future actions by forecasting both the visual and temporal future.

Action Anticipation Generative Adversarial Network

Neural Memory Networks for Seizure Type Classification

no code implementations10 Dec 2019 David Ahmedt-Aristizabal, Tharindu Fernando, Simon Denman, Lars Petersson, Matthew J. Aburn, Clinton Fookes

Inspired by recent advances in neural memory networks (NMNs), we introduce a novel approach for the classification of seizure type using electrophysiological data.

Classification EEG +3

Correlation-aware Adversarial Domain Adaptation and Generalization

no code implementations29 Nov 2019 Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, Sridha Sridharan

Domain adaptation (DA) and domain generalization (DG) have emerged as a solution to the domain shift problem where the distribution of the source and target data is different.

Domain Generalization

Exploiting Human Social Cognition for the Detection of Fake and Fraudulent Faces via Memory Networks

no code implementations17 Nov 2019 Tharindu Fernando, Clinton Fookes, Simon Denman, Sridha Sridharan

Advances in computer vision have brought us to the point where we have the ability to synthesise realistic fake content.

Face Detection

Neural Memory Plasticity for Anomaly Detection

no code implementations12 Oct 2019 Tharindu Fernando, Simon Denman, David Ahmedt-Aristizabal, Sridha Sridharan, Kristin Laurens, Patrick Johnston, Clinton Fookes

In the domain of machine learning, Neural Memory Networks (NMNs) have recently achieved impressive results in a variety of application areas including visual question answering, trajectory prediction, object tracking, and language modelling.

Anomaly Detection EEG +6

Fine-grained Action Segmentation using the Semi-Supervised Action GAN

no code implementations20 Sep 2019 Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

In this paper we address the problem of continuous fine-grained action segmentation, in which multiple actions are present in an unsegmented video stream.

Action Classification Action Segmentation +2

Forecasting Future Action Sequences with Neural Memory Networks

no code implementations20 Sep 2019 Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

We propose a novel neural memory network based framework for future action sequence forecasting.

Rethinking Planar Homography Estimation Using Perspective Fields

1 code implementation ACCV 2018 2019 Rui Zeng, Simon Denman, Sridha Sridharan, Clinton Fookes

In addition, the new parameterization of this task is general and can be implemented by any fully convolutional network (FCN) architecture.

Homography Estimation

Constrained Design of Deep Iris Networks

no code implementations23 May 2019 Kien Nguyen, Clinton Fookes, Sridha Sridharan

On the other hand, it allows us to investigate the optimality of the classic IrisCode and recent iris networks.

Iris Recognition

Geometry-constrained Car Recognition Using a 3D Perspective Network

no code implementations19 Mar 2019 Rui Zeng, ZongYuan Ge, Simon Denman, Sridha Sridharan, Clinton Fookes

Unlike existing methods which only use attention mechanisms to locate 2D discriminative information, our work learns a novel 3D perspective feature representation of a vehicle, which is then fused with 2D appearance feature to predict the category.

MTRNet: A Generic Scene Text Eraser

1 code implementation11 Mar 2019 Osman Tursun, Rui Zeng, Simon Denman, Sabesan Sivapalan, Sridha Sridharan, Clinton Fookes

Developing such a generic text eraser for real scenes is a challenging task, since it inherits all the challenges of multi-lingual and curved text detection and inpainting.

Curved Text Detection Text Detection

On Minimum Discrepancy Estimation for Deep Domain Adaptation

1 code implementation2 Jan 2019 Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, Sridha Sridharan

In the presence of large sets of labeled data, Deep Learning (DL) has accomplished extraordinary triumphs in the avenue of computer vision, particularly in object classification and recognition tasks.

Domain Adaptation General Classification +1

Multi-component Image Translation for Deep Domain Generalization

no code implementations21 Dec 2018 Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, Sridha Sridharan

If DA methods are applied directly to DG by a simple exclusion of the target data from training, poor performance will result for a given task.

Domain Generalization Generative Adversarial Network +1

A Deep Four-Stream Siamese Convolutional Neural Network with Joint Verification and Identification Loss for Person Re-detection

no code implementations21 Dec 2018 Amena Khatun, Simon Denman, Sridha Sridharan, Clinton Fookes

In this paper, we propose a four stream Siamese deep convolutional neural network for person redetection that jointly optimises verification and identification losses over a four image input group.

Person Re-Identification

Multi-Level Sequence GAN for Group Activity Recognition

no code implementations18 Dec 2018 Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

The generator is fed with person-level and scene-level features that are mapped temporally through LSTM networks.

Action Classification Activity Prediction +3

Component-based Attention for Large-scale Trademark Retrieval

1 code implementation7 Nov 2018 Osman Tursun, Simon Denman, Sabesan Sivapalan, Sridha Sridharan, Clinton Fookes, Sandra Mau

The demand for large-scale trademark retrieval (TR) systems has significantly increased to combat the rise in international trademark infringement.

Retrieval

A Comparative Analysis of Registration Tools: Traditional vs Deep Learning Approach on High Resolution Tissue Cleared Data

no code implementations19 Oct 2018 Abdullah Nazib, Clinton Fookes, Dimitri Perrin

In this paper, we investigate and compare the performance of a deep learning based registration method with traditional optimization based methods on samples from tissue-clearing methods.

Image Registration

Skeleton Driven Non-rigid Motion Tracking and 3D Reconstruction

no code implementations9 Oct 2018 Shafeeq Elanattil, Peyman Moghadam, Simon Denman, Sridha Sridharan, Clinton Fookes

We propose a puppet model-based tracking approach using skeleton prior, which provides a better initialization for tracking articulated movements.

3D Reconstruction

Sparse Over-complete Patch Matching

no code implementations9 Jun 2018 Akila Pemasiri, Kien Nguyen, Sridha Sridharan, Clinton Fookes

State -of-the-art patch matching techniques take image patches as input to a convolutional neural network to extract the patch features and evaluate their similarity.

Patch Matching

Non-rigid Reconstruction with a Single Moving RGB-D Camera

no code implementations29 May 2018 Shafeeq Elanattil, Peyman Moghadam, Sridha Sridharan, Clinton Fookes, Mark Cox

Our approach uses camera pose estimated from the rigid background for foreground tracking.

Meta Transfer Learning for Facial Emotion Recognition

no code implementations25 May 2018 Dung Nguyen, Kien Nguyen, Sridha Sridharan, Iman Abbasnejad, David Dean, Clinton Fookes

The use of deep learning techniques for automatic facial expression recognition has recently attracted great interest but developed models are still unable to generalize well due to the lack of large emotion datasets for deep learning.

Facial Emotion Recognition Facial Expression Recognition +2

Deep Decision Trees for Discriminative Dictionary Learning with Adversarial Multi-Agent Trajectories

no code implementations14 May 2018 Tharindu Fernando, Sridha Sridharan, Clinton Fookes, Simon Denman

With the explosion in the availability of spatio-temporal tracking data in modern sports, there is an enormous opportunity to better analyse, learn and predict important events in adversarial group environments.

Clustering Dictionary Learning

Task Specific Visual Saliency Prediction with Memory Augmented Conditional Generative Adversarial Networks

no code implementations9 Mar 2018 Tharindu Fernando, Simon Denman, Sridha Sridharan, Clinton Fookes

Visual saliency patterns are the result of a variety of factors aside from the image being parsed, however existing approaches have ignored these.

Saliency Prediction

Image2Mesh: A Learning Framework for Single Image 3D Reconstruction

1 code implementation29 Nov 2017 Jhony K. Pontes, Chen Kong, Sridha Sridharan, Simon Lucey, Anders Eriksson, Clinton Fookes

One challenge that remains open in 3D deep learning is how to efficiently represent 3D data to feed deep networks.

3D Reconstruction

Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM

no code implementations6 Nov 2017 Chanoh Park, Peyman Moghadam, Soohwan Kim, Alberto Elfes, Clinton Fookes, Sridha Sridharan

The concept of continuous-time trajectory representation has brought increased accuracy and efficiency to multi-modal sensor fusion in modern SLAM.

Robotics

Joint Max Margin and Semantic Features for Continuous Event Detection in Complex Scenes

no code implementations13 Jun 2017 Iman Abbasnejad, Sridha Sridharan, Simon Denman, Clinton Fookes, Simon Lucey

In this paper the problem of complex event detection in the continuous domain (i. e. events with unknown starting and ending locations) is addressed.

Action Recognition Event Detection +1

Two Stream LSTM: A Deep Fusion Framework for Human Action Recognition

no code implementations4 Apr 2017 Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes

Our contribution in this paper is a deep fusion framework that more effectively exploits spatial features from CNNs with temporal features from LSTM models.

Action Recognition Temporal Action Localization +1

Tree Memory Networks for Modelling Long-term Temporal Dependencies

no code implementations12 Mar 2017 Tharindu Fernando, Simon Denman, Aaron McFadyen, Sridha Sridharan, Clinton Fookes

In this paper, we propose a Tree Memory Network (TMN) for modelling long term and short term relationships in sequence-to-sequence mapping problems.

Machine Translation Part-Of-Speech Tagging +3

Soft + Hardwired Attention: An LSTM Framework for Human Trajectory Prediction and Abnormal Event Detection

no code implementations18 Feb 2017 Tharindu Fernando, Simon Denman, Sridha Sridharan, Clinton Fookes

We illustrate how a simple approximation of attention weights (i. e hard-wired) can be merged together with soft attention weights in order to make our model applicable for challenging real world scenarios with hundreds of neighbours.

Caption Generation Event Detection +2

Automatic Event Detection for Signal-based Surveillance

no code implementations6 Dec 2016 Jingxin Xu, Clinton Fookes, Sridha Sridharan

Though such systems are still heavily reliant on human labour to monitor the captured information, there have been a number of automatic techniques proposed to analysing the data.

Event Detection Experimental Design

Learning Temporal Alignment Uncertainty for Efficient Event Detection

no code implementations4 Sep 2015 Iman Abbasnejad, Sridha Sridharan, Simon Denman, Clinton Fookes, Simon Lucey

A popular approach in this regard is to represent a sequence using a bag of words (BOW) representation due to its: (i) fixed dimensionality irrespective of the sequence length, and (ii) its ability to compactly model the statistics in the sequence.

Event Detection

Cannot find the paper you are looking for? You can Submit a new open access paper.