no code implementations • 4 Jan 2024 • Ecem Sogancioglu, Bram van Ginneken, Finn Behrendt, Marcel Bengs, Alexander Schlaefer, Miron Radu, Di Xu, Ke Sheng, Fabien Scalzo, Eric Marcus, Samuele Papa, Jonas Teuwen, Ernst Th. Scholten, Steven Schalekamp, Nils Hendrix, Colin Jacobs, Ward Hendrix, Clara I Sánchez, Keelin Murphy
To address this, we organized a public research challenge, NODE21, aimed at the detection and generation of lung nodules in chest X-rays.
1 code implementation • 8 Nov 2023 • Gabriel Efrain Humpire-Mamani, Colin Jacobs, Mathias Prokop, Bram van Ginneken, Nikolas Lessmann
A base segmentation model (3D U-Net) was trained on a large and sparsely annotated dataset; its weights were used for transfer learning on four new down-stream segmentation tasks for which a fully annotated dataset was available.
no code implementations • 6 Sep 2023 • Gabriel Efrain Humpire Mamani, Nikolas Lessmann, Ernst Th. Scholten, Mathias Prokop, Colin Jacobs, Bram van Ginneken
Our end-to-end segmentation method was trained on 215 contrast-enhanced thoracic-abdominal CT scans, with half of these scans containing one or more abnormalities.
1 code implementation • 5 Sep 2023 • Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Dirk Jan Slebos, Bram van Ginneken
Manual analysis of emphysema subtypes and severity is laborious and subjective.
1 code implementation • 12 Jan 2022 • Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Bram van Ginneken
The proposed method formulates airway labeling as a branch classification problem in the airway tree graph, where branch features are extracted using convolutional neural networks (CNN) and enriched using graph neural networks.
no code implementations • 1 Jun 2021 • Weiyi Xie, Colin Jacobs, Bram van Ginneken
We propose a deep learning clustering method that exploits dense features from a segmentation network for emphysema subtyping from computed tomography (CT) scans.
no code implementations • 25 May 2021 • Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Bram van Ginneken
Therefore, we propose a weakly-supervised segmentation method based on dense regression activation maps (dRAMs).
no code implementations • 21 Sep 2020 • Coen de Vente, Luuk H. Boulogne, Kiran Vaidhya Venkadesh, Cheryl Sital, Nikolas Lessmann, Colin Jacobs, Clara I. Sánchez, Bram van Ginneken
This paper identifies a variety of components that increase the performance of CNN-based algorithms for COVID-19 grading from CT images.
no code implementations • 16 Apr 2020 • Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, Bram van Ginneken
We argue that such structural relationships play a critical role in the accurate delineation of pulmonary lobes when the lungs are affected by diseases such as COVID-19 or COPD.
6 code implementations • 13 Jan 2019 • Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018.
1 code implementation • 30 Nov 2018 • Guilherme Aresta, Colin Jacobs, Teresa Araújo, António Cunha, Isabel Ramos, Bram van Ginneken, Aurélio Campilho
We propose iW-Net, a deep learning model that allows for both automatic and interactive segmentation of lung nodules in computed tomography images.
no code implementations • 10 Apr 2017 • Colin Jacobs, Karl Glazebrook, Thomas Collett, Anupreeta More, Christopher McCarthy
An ensemble of trained networks was applied to all of the 171 square degrees of the CFHTLS wide field image data, identifying 18, 861 candidates including 63 known and 139 other potential lens candidates.
Instrumentation and Methods for Astrophysics Astrophysics of Galaxies
no code implementations • 23 Dec 2016 • Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas de Bel, Moira S. N. Berens, Cas van den Bogaard, Piergiorgio Cerello, Hao Chen, Qi Dou, Maria Evelina Fantacci, Bram Geurts, Robbert van der Gugten, Pheng Ann Heng, Bart Jansen, Michael M. J. de Kaste, Valentin Kotov, Jack Yu-Hung Lin, Jeroen T. M. C. Manders, Alexander Sónora-Mengana, Juan Carlos García-Naranjo, Evgenia Papavasileiou, Mathias Prokop, Marco Saletta, Cornelia M Schaefer-Prokop, Ernst T. Scholten, Luuk Scholten, Miranda M. Snoeren, Ernesto Lopez Torres, Jef Vandemeulebroucke, Nicole Walasek, Guido C. A. Zuidhof, Bram van Ginneken, Colin Jacobs
We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set.
no code implementations • 28 Oct 2016 • Francesco Ciompi, Kaman Chung, Sarah J. van Riel, Arnaud Arindra Adiyoso Setio, Paul K. Gerke, Colin Jacobs, Ernst Th. Scholten, Cornelia Schaefer-Prokop, Mathilde M. W. Wille, Alfonso Marchiano, Ugo Pastorino, Mathias Prokop, Bram van Ginneken
The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy.