Search Results for author: Colin White

Found 31 papers, 21 papers with code

Humanity's Last Exam

no code implementations24 Jan 2025 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Daron Anderson, Tung Nguyen, Mobeen Mahmood, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou, Zihan Wang, Jessica P. Wang, Pawan Kumar, Oleksandr Pokutnyi, Robert Gerbicz, Serguei Popov, John-Clark Levin, Mstyslav Kazakov, Johannes Schmitt, Geoff Galgon, Alvaro Sanchez, Yongki Lee, Will Yeadon, Scott Sauers, Marc Roth, Chidozie Agu, Søren Riis, Fabian Giska, Saiteja Utpala, Zachary Giboney, Gashaw M. Goshu, Joan of Arc Xavier, Sarah-Jane Crowson, Mohinder Maheshbhai Naiya, Noah Burns, Lennart Finke, Zerui Cheng, Hyunwoo Park, Francesco Fournier-Facio, John Wydallis, Mark Nandor, Ankit Singh, Tim Gehrunger, Jiaqi Cai, Ben McCarty, Darling Duclosel, Jungbae Nam, Jennifer Zampese, Ryan G. Hoerr, Aras Bacho, Gautier Abou Loume, Abdallah Galal, Hangrui Cao, Alexis C Garretson, Damien Sileo, Qiuyu Ren, Doru Cojoc, Pavel Arkhipov, Usman Qazi, Lianghui Li, Sumeet Motwani, Christian Schroeder de Witt, Edwin Taylor, Johannes Veith, Eric Singer, Taylor D. Hartman, Paolo Rissone, Jaehyeok Jin, Jack Wei Lun Shi, Chris G. Willcocks, Aleksandar Mikov, Ameya Prabhu, Longke Tang, Xavier Alapont, Justine Leon Uro, Kevin Zhou, Emily de Oliveira Santos, Andrey Pupasov Maksimov, Edward Vendrow, Kengo Zenitani, Julien Guillod, Yuqi Li, Joshua Vendrow, Vladyslav Kuchkin, Ng Ze-An, Pierre Marion, Denis Efremov, Jayson Lynch, Kaiqu Liang, Andrew Gritsevskiy, Dakotah Martinez, Ben Pageler, Nick Crispino, Dimitri Zvonkine, Natanael Wildner Fraga, Saeed Soori, Ori Press, Henry Tang, Julian Salazar, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric Dieuleveut, T. Ryan Rogers, Wenjin Zhang, Bikun Li, Jinzhou Yang, Arun Rao, Gabriel Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Subrata Mishra, Ariel Ghislain Kemogne Kamdoum, Tobias Kreiman, Tad Hogg, Alvin Jin, Carlo Bosio, Gongbo Sun, Brian P Coppola, Tim Tarver, Haline Heidinger, Rafael Sayous, Stefan Ivanov, Joseph M Cavanagh, Jiawei Shen, Joseph Marvin Imperial, Philippe Schwaller, Shaipranesh Senthilkuma, Andres M Bran, Ali Dehghan, Andres Algaba, Brecht Verbeken, David Noever, Ragavendran P V, Lisa Schut, Ilia Sucholutsky, Evgenii Zheltonozhskii, Derek Lim, Richard Stanley, Shankar Sivarajan, Tong Yang, John Maar, Julian Wykowski, Martí Oller, Jennifer Sandlin, Anmol Sahu, Yuzheng Hu, Sara Fish, Nasser Heydari, Archimedes Apronti, Kaivalya Rawal, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner, James Koppel, Jeremy Nguyen, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene, Alan Goldfarb, Sergey Ivanov, Rafał Poświata, Chenguang Wang, Daofeng Li, Donato Crisostomi, Andrea Achilleos, Benjamin Myklebust, Archan Sen, David Perrella, Nurdin Kaparov, Mark H Inlow, Allen Zang, Elliott Thornley, Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster, Daniel Munro, Linh Ho, Dan Bar Hava, Aleksey Kuchkin, Robert Lauff, David Holmes, Frank Sommerhage, Keith Schneider, Zakayo Kazibwe, Nate Stambaugh, Mukhwinder Singh, Ilias Magoulas, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Veit Elser, Kanu Priya Agarwal, Victor Efren Guadarrama Vilchis, Immo Klose, Christoph Demian, Ujjwala Anantheswaran, Adam Zweiger, Guglielmo Albani, Jeffery Li, Nicolas Daans, Maksim Radionov, Václav Rozhoň, Ziqiao Ma, Christian Stump, Mohammed Berkani, Jacob Platnick, Volodymyr Nevirkovets, Luke Basler, Marco Piccardo, Ferenc Jeanplong, Niv Cohen, Josef Tkadlec, Paul Rosu, Piotr Padlewski, Stanislaw Barzowski, Kyle Montgomery, Aline Menezes, Arkil Patel, Zixuan Wang, Jamie Tucker-Foltz, Jack Stade, Tom Goertzen, Fereshteh Kazemi, Jeremiah Milbauer, John Arnold Ambay, Abhishek Shukla, Yan Carlos Leyva Labrador, Alan Givré, Hew Wolff, Vivien Rossbach, Muhammad Fayez Aziz, Younesse Kaddar, Yanxu Chen, Robin Zhang, Jiayi Pan, Antonio Terpin, Niklas Muennighoff, Hailey Schoelkopf, Eric Zheng, Avishy Carmi, Adam Jones, Jainam Shah, Ethan D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Andrew Ho, Shaul Barkan, Jiaqi Wang, Martin Stehberger, Egor Kretov, Kaustubh Sridhar, Zienab EL-Wasif, Anji Zhang, Daniel Pyda, Joanna Tam, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis, Michael Krause, Andrew Redenti, Daniel Bugas, David Aldous, Jesyin Lai, Shannon Coleman, Mohsen Bahaloo, Jiangnan Xu, Sangwon Lee, Sandy Zhao, Ning Tang, Michael K. Cohen, Micah Carroll, Orr Paradise, Jan Hendrik Kirchner, Stefan Steinerberger, Maksym Ovchynnikov, Jason O. Matos, Adithya Shenoy, Benedito Alves de Oliveira Junior, Michael Wang, Yuzhou Nie, Paolo Giordano, Philipp Petersen, Anna Sztyber-Betley, Priti Shukla, Jonathan Crozier, Antonella Pinto, Shreyas Verma, Prashant Joshi, Zheng-Xin Yong, Allison Tee, Jérémy Andréoletti, Orion Weller, Raghav Singhal, Gang Zhang, Alexander Ivanov, Seri Khoury, Hamid Mostaghimi, Kunvar Thaman, Qijia Chen, Tran Quoc Khánh, Jacob Loader, Stefano Cavalleri, Hannah Szlyk, Zachary Brown, Jonathan Roberts, William Alley, Kunyang Sun, Ryan Stendall, Max Lamparth, Anka Reuel, Ting Wang, Hanmeng Xu, Sreenivas Goud Raparthi, Pablo Hernández-Cámara, Freddie Martin, Dmitry Malishev, Thomas Preu, Tomek Korbak, Marcus Abramovitch, Dominic Williamson, Ziye Chen, Biró Bálint, M Saiful Bari, Peyman Kassani, ZiHao Wang, Behzad Ansarinejad, Laxman Prasad Goswami, Yewen Sun, Hossam Elgnainy, Daniel Tordera, George Balabanian, Earth Anderson, Lynna Kvistad, Alejandro José Moyano, Rajat Maheshwari, Ahmad Sakor, Murat Eron, Isaac C. McAlister, Javier Gimenez, Innocent Enyekwe, Andrew Favre D. O., Shailesh Shah, Xiaoxiang Zhou, Firuz Kamalov, Ronald Clark, Sherwin Abdoli, Tim Santens, Khalida Meer, Harrison K Wang, Kalyan Ramakrishnan, Evan Chen, Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le, Noam Kolt, Niels Mündler, Avi Semler, Emma Rodman, Jacob Drori, Carl J Fossum, Milind Jagota, Ronak Pradeep, Honglu Fan, Tej Shah, Jonathan Eicher, Michael Chen, Kushal Thaman, William Merrill, Carter Harris, Jason Gross, Ilya Gusev, Asankhaya Sharma, Shashank Agnihotri, Pavel Zhelnov, Siranut Usawasutsakorn, Mohammadreza Mofayezi, Sergei Bogdanov, Alexander Piperski, Marc Carauleanu, David K. Zhang, Dylan Ler, Roman Leventov, Ignat Soroko, Thorben Jansen, Pascal Lauer, Joshua Duersch, Vage Taamazyan, Wiktor Morak, Wenjie Ma, William Held, Tran Đuc Huy, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed, Julian Noah Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler, Hossein Shahrtash, Edson Oliveira, Joseph W. Jackson, Daniel Espinosa Gonzalez, Andy Zou, Muthu Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen, Emilien Duc, Bita Golshani, David Stap, Mikalai Uzhou, Alina Borisovna Zhidkovskaya, Lukas Lewark, Mátyás Vincze, Dustin Wehr, Colin Tang, Zaki Hossain, Shaun Phillips, Jiang Muzhen, Fredrik Ekström, Angela Hammon, Oam Patel, Nicolas Remy, Faraz Farhidi, George Medley, Forough Mohammadzadeh, Madellene Peñaflor, Haile Kassahun, Alena Friedrich, Claire Sparrow, Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi, Eric Hallman, Mike Battaglia, Mohammad Maghsoudimehrabani, Hieu Hoang, Alon Amit, Dave Hulbert, Roberto Pereira, Simon Weber, Stephen Mensah, Nathan Andre, Anton Peristyy, Chris Harjadi, Himanshu Gupta, Stephen Malina, Samuel Albanie, Will Cai, Mustafa Mehkary, Frank Reidegeld, Anna-Katharina Dick, Cary Friday, Jasdeep Sidhu, Wanyoung Kim, Mariana Costa, Hubeyb Gurdogan, Brian Weber, Harsh Kumar, Tong Jiang, Arunim Agarwal, Chiara Ceconello, Warren S. Vaz, Chao Zhuang, Haon Park, Andrew R. Tawfeek, Daattavya Aggarwal, Michael Kirchhof, Linjie Dai, Evan Kim, Johan Ferret, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin Zhang, Antonio Franca, Diana T. Pham, Kang Yong Loh, Joshua Robinson, Shreen Gul, Gunjan Chhablani, Zhehang Du, Adrian Cosma, Colin White, Robin Riblet, Prajvi Saxena, Jacob Votava, Vladimir Vinnikov, Ethan Delaney, Shiv Halasyamani, Syed M. Shahid, Jean-Christophe Mourrat, Lavr Vetoshkin, Renas Bacho, Vincent Ginis, Aleksandr Maksapetyan, Florencia de la Rosa, Xiuyu Li, Guillaume Malod, Leon Lang, Julien Laurendeau, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor Souza, Yuchen Anna Zhou, Yiğit Yalın, Gbenga Daniel Obikoya, Luca Arnaboldi, Rai, Filippo Bigi, Kaniuar Bacho, Pierre Clavier, Gabriel Recchia, Mara Popescu, Nikita Shulga, Ngefor Mildred Tanwie, Thomas C. H. Lux, Ben Rank, Colin Ni, Alesia Yakimchyk, Huanxu, Liu, Olle Häggström, Emil Verkama, Himanshu Narayan, Hans Gundlach, Leonor Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Yiyang Fan, Gabriel Poesia Reis e Silva, Linwei Xin, Yosi Kratish, Jakub Łucki, Wen-Ding Li, Justin Xu, Kevin Joseph Scaria, Freddie Vargus, Farzad Habibi, Long, Lian, Emanuele Rodolà, Jules Robins, Vincent Cheng, Declan Grabb, Ida Bosio, Tony Fruhauff, Ido Akov, Eve J. Y. Lo, Hao Qi, Xi Jiang, Ben Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner, Mao Mao, Yibo Jiang, Xinyu Zhang, David Avagian, Eshawn Jessica Scipio, Muhammad Rehan Siddiqi, Alon Ragoler, Justin Tan, Deepakkumar Patil, Rebeka Plecnik, Aaron Kirtland, Roselynn Grace Montecillo, Stephane Durand, Omer Faruk Bodur, Zahra Adoul, Mohamed Zekry, Guillaume Douville, Ali Karakoc, Tania C. B. Santos, Samir Shamseldeen, Loukmane Karim, Anna Liakhovitskaia, Nate Resman, Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Sarah Hoback, Rodrigo De Oliveira Pena, Glen Sherman, Hodjat Mariji, Rasoul Pouriamanesh, Wentao Wu, Gözdenur Demir, Sandra Mendoza, Ismail Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Hsiaoyun Milliron, Mohammad Safdari, Liangti Dai, Siriphan Arthornthurasuk, Alexey Pronin, Jing Fan, Angel Ramirez-Trinidad, Ashley Cartwright, Daphiny Pottmaier, Omid Taheri, David Outevsky, Stanley Stepanic, Samuel Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Abdelkader Dendane, Sam Ali, Ricardo Lorena, Krishnamurthy Iyer, Sk Md Salauddin, Murat Islam, Juan Gonzalez, Josh Ducey, Russell Campbell, Maja Somrak, Vasilios Mavroudis, Eric Vergo, Juehang Qin, Benjámin Borbás, Eric Chu, Jack Lindsey, Anil Radhakrishnan, Antoine Jallon, I. M. J. McInnis, Alex Hoover, Sören Möller, Song Bian, John Lai, Tejal Patwardhan, Summer Yue, Alexandr Wang, Dan Hendrycks

However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities.

Humanity's Last Exam Language Modeling +4

LiveBench: A Challenging, Contamination-Free LLM Benchmark

1 code implementation27 Jun 2024 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chinmay Hegde, Yann Lecun, Tom Goldstein, Willie Neiswanger, Micah Goldblum

In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing.

Instruction Following Math

Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs

2 code implementations19 Mar 2024 Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris Bonev, Colin White, Julius Berner, Raymond A. Yeh, Jean Kossaifi, Kamyar Azizzadenesheli, Anima Anandkumar

Existing neural operator architectures face challenges when solving multiphysics problems with coupled partial differential equations (PDEs) due to complex geometries, interactions between physical variables, and the limited amounts of high-resolution training data.

Few-Shot Learning Self-Supervised Learning

Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive

2 code implementations20 Feb 2024 Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, Colin White

In this work, first we show theoretically that the standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases.

TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks

2 code implementations17 Feb 2024 Benjamin Feuer, Robin Tibor Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter, Micah Goldblum, Niv Cohen, Colin White

Notably, TabPFN achieves very strong performance on small tabular datasets but is not designed to make predictions for datasets of size larger than 1000.

Fairness In-Context Learning +2

Data Contamination Through the Lens of Time

1 code implementation16 Oct 2023 Manley Roberts, Himanshu Thakur, Christine Herlihy, Colin White, Samuel Dooley

Recent claims about the impressive abilities of large language models (LLMs) are often supported by evaluating publicly available benchmarks.

Mathematical Problem-Solving

Guaranteed Approximation Bounds for Mixed-Precision Neural Operators

1 code implementation27 Jul 2023 Renbo Tu, Colin White, Jean Kossaifi, Boris Bonev, Nikola Kovachki, Gennady Pekhimenko, Kamyar Azizzadenesheli, Anima Anandkumar

Neural operators, such as Fourier Neural Operators (FNO), form a principled approach for learning solution operators for PDEs and other mappings between function spaces.

Operator learning

When Do Neural Nets Outperform Boosted Trees on Tabular Data?

2 code implementations NeurIPS 2023 Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Benjamin Feuer, Chinmay Hegde, Ganesh Ramakrishnan, Micah Goldblum, Colin White

To this end, we conduct the largest tabular data analysis to date, comparing 19 algorithms across 176 datasets, and we find that the 'NN vs. GBDT' debate is overemphasized: for a surprisingly high number of datasets, either the performance difference between GBDTs and NNs is negligible, or light hyperparameter tuning on a GBDT is more important than choosing between NNs and GBDTs.

Speeding up NAS with Adaptive Subset Selection

no code implementations2 Nov 2022 Vishak Prasad C, Colin White, Paarth Jain, Sibasis Nayak, Ganesh Ramakrishnan

A majority of recent developments in neural architecture search (NAS) have been aimed at decreasing the computational cost of various techniques without affecting their final performance.

Neural Architecture Search

Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition

2 code implementations NeurIPS 2023 Samuel Dooley, Rhea Sanjay Sukthanker, John P. Dickerson, Colin White, Frank Hutter, Micah Goldblum

Our search outputs a suite of models which Pareto-dominate all other high-performance architectures and existing bias mitigation methods in terms of accuracy and fairness, often by large margins, on the two most widely used datasets for face identification, CelebA and VGGFace2.

Face Identification Face Recognition +2

AutoML for Climate Change: A Call to Action

1 code implementation7 Oct 2022 Renbo Tu, Nicholas Roberts, Vishak Prasad, Sibasis Nayak, Paarth Jain, Frederic Sala, Ganesh Ramakrishnan, Ameet Talwalkar, Willie Neiswanger, Colin White

The challenge that climate change poses to humanity has spurred a rapidly developing field of artificial intelligence research focused on climate change applications.

AutoML

NAS-Bench-Suite-Zero: Accelerating Research on Zero Cost Proxies

1 code implementation6 Oct 2022 Arjun Krishnakumar, Colin White, Arber Zela, Renbo Tu, Mahmoud Safari, Frank Hutter

Zero-cost proxies (ZC proxies) are a recent architecture performance prediction technique aiming to significantly speed up algorithms for neural architecture search (NAS).

Neural Architecture Search

On the Generalizability and Predictability of Recommender Systems

1 code implementation23 Jun 2022 Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, John P. Dickerson, Colin White

By using far more meta-training data than prior work, RecZilla is able to substantially reduce the level of human involvement when faced with a new recommender system application.

Meta-Learning Recommendation Systems

NAS-Bench-Suite: NAS Evaluation is (Now) Surprisingly Easy

1 code implementation ICLR 2022 Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian, Mahmoud Safari, Kaicheng Yu, Frank Hutter

The release of tabular benchmarks, such as NAS-Bench-101 and NAS-Bench-201, has significantly lowered the computational overhead for conducting scientific research in neural architecture search (NAS).

Image Classification Neural Architecture Search +4

NAS-Bench-x11 and the Power of Learning Curves

1 code implementation NeurIPS 2021 Shen Yan, Colin White, Yash Savani, Frank Hutter

While early research in neural architecture search (NAS) required extreme computational resources, the recent releases of tabular and surrogate benchmarks have greatly increased the speed and reproducibility of NAS research.

Neural Architecture Search

Synthetic Benchmarks for Scientific Research in Explainable Machine Learning

1 code implementation23 Jun 2021 Yang Liu, Sujay Khandagale, Colin White, Willie Neiswanger

In this work, we address this issue by releasing XAI-Bench: a suite of synthetic datasets along with a library for benchmarking feature attribution algorithms.

Benchmarking BIG-bench Machine Learning +1

How Powerful are Performance Predictors in Neural Architecture Search?

1 code implementation NeurIPS 2021 Colin White, Arber Zela, Binxin Ru, Yang Liu, Frank Hutter

Early methods in the rapidly developing field of neural architecture search (NAS) required fully training thousands of neural networks.

Neural Architecture Search

A Study on Encodings for Neural Architecture Search

2 code implementations NeurIPS 2020 Colin White, Willie Neiswanger, Sam Nolen, Yash Savani

First we formally define architecture encodings and give a theoretical characterization on the scalability of the encodings we study Then we identify the main encoding-dependent subroutines which NAS algorithms employ, running experiments to show which encodings work best with each subroutine for many popular algorithms.

Neural Architecture Search

Intra-Processing Methods for Debiasing Neural Networks

3 code implementations NeurIPS 2020 Yash Savani, Colin White, Naveen Sundar Govindarajulu

Intra-processing methods are designed specifically to debias large models which have been trained on a generic dataset and fine-tuned on a more specific task.

Face Recognition Fairness

Exploring the Loss Landscape in Neural Architecture Search

2 code implementations6 May 2020 Colin White, Sam Nolen, Yash Savani

In this work, we show that (1) the simplest hill-climbing algorithm is a powerful baseline for NAS, and (2), when the noise in popular NAS benchmark datasets is reduced to a minimum, hill-climbing to outperforms many popular state-of-the-art algorithms.

Combinatorial Optimization Denoising +3

BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search

3 code implementations25 Oct 2019 Colin White, Willie Neiswanger, Yash Savani

Bayesian optimization (BO), which has long had success in hyperparameter optimization, has recently emerged as a very promising strategy for NAS when it is coupled with a neural predictor.

Bayesian Optimization Hyperparameter Optimization +2

BANANAS: Bayesian Optimization with Neural Networks for Neural Architecture Search

no code implementations25 Sep 2019 Colin White, Willie Neiswanger, Yash Savani

We develop a path-based encoding scheme to featurize the neural architectures that are used to train the neural network model.

Bayesian Optimization Neural Architecture Search +2

Clustering under Local Stability: Bridging the Gap between Worst-Case and Beyond Worst-Case Analysis

no code implementations19 May 2017 Maria-Florina Balcan, Colin White

The typical idea is to design a clustering algorithm that outputs a near-optimal solution, provided the data satisfy a natural stability notion.

Clustering

Robust Communication-Optimal Distributed Clustering Algorithms

no code implementations2 Mar 2017 Pranjal Awasthi, Ainesh Bakshi, Maria-Florina Balcan, Colin White, David Woodruff

In this work, we study the $k$-median and $k$-means clustering problems when the data is distributed across many servers and can contain outliers.

Clustering

Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial Partitioning Problems

no code implementations14 Nov 2016 Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, Colin White

We address this problem for clustering, max-cut, and other partitioning problems, such as integer quadratic programming, by designing computationally efficient and sample efficient learning algorithms which receive samples from an application-specific distribution over problem instances and learn a partitioning algorithm with high expected performance.

Clustering Learning Theory

Learning Combinatorial Functions from Pairwise Comparisons

no code implementations30 May 2016 Maria-Florina Balcan, Ellen Vitercik, Colin White

However, for real-valued functions, cardinal labels might not be accessible, or it may be difficult for an expert to consistently assign real-valued labels over the entire set of examples.

BIG-bench Machine Learning

Data Driven Resource Allocation for Distributed Learning

no code implementations15 Dec 2015 Travis Dick, Mu Li, Venkata Krishna Pillutla, Colin White, Maria Florina Balcan, Alex Smola

In distributed machine learning, data is dispatched to multiple machines for processing.

$k$-center Clustering under Perturbation Resilience

no code implementations14 May 2015 Maria-Florina Balcan, Nika Haghtalab, Colin White

In this work, we take this approach and provide strong positive results both for the asymmetric and symmetric $k$-center problems under a natural input stability (promise) condition called $\alpha$-perturbation resilience [Bilu and Linia 2012], which states that the optimal solution does not change under any alpha-factor perturbation to the input distances.

Clustering

Cannot find the paper you are looking for? You can Submit a new open access paper.