Search Results for author: Constantin Seibold

Found 28 papers, 19 papers with code

Foreign object segmentation in chest x-rays through anatomy-guided shape insertion

no code implementations21 Jan 2025 Constantin Seibold, Hamza Kalisch, Lukas Heine, Simon Reiß, Jens Kleesiek

In this paper, we tackle the challenge of instance segmentation for foreign objects in chest radiographs, commonly seen in postoperative follow-ups with stents, pacemakers, or ingested objects in children.

Anatomy Diversity +2

Every Component Counts: Rethinking the Measure of Success for Medical Semantic Segmentation in Multi-Instance Segmentation Tasks

no code implementations24 Oct 2024 Alexander Jaus, Constantin Seibold, Simon Reiß, Zdravko Marinov, Keyi Li, Zeling Ye, Stefan Krieg, Jens Kleesiek, Rainer Stiefelhagen

We present Connected-Component~(CC)-Metrics, a novel semantic segmentation evaluation protocol, targeted to align existing semantic segmentation metrics to a multi-instance detection scenario in which each connected component matters.

Instance Segmentation Segmentation +1

De-Identification of Medical Imaging Data: A Comprehensive Tool for Ensuring Patient Privacy

1 code implementation16 Oct 2024 Moritz Rempe, Lukas Heine, Constantin Seibold, Fabian Hörst, Jens Kleesiek

Medical data employed in research frequently comprises sensitive patient health information (PHI), which is subject to rigorous legal frameworks such as the General Data Protection Regulation (GDPR) or the Health Insurance Portability and Accountability Act (HIPAA).

De-identification whole slide images

Spacewalker: Traversing Representation Spaces for Fast Interactive Exploration and Annotation of Unstructured Data

1 code implementation25 Sep 2024 Lukas Heine, Fabian Hörst, Jana Fragemann, Gijs Luijten, Jan Egger, Fin Bahnsen, M. Saquib Sarfraz, Jens Kleesiek, Constantin Seibold

In industries such as healthcare, finance, and manufacturing, analysis of unstructured textual data presents significant challenges for analysis and decision making.

Decision Making

Towards Synthetic Data Generation for Improved Pain Recognition in Videos under Patient Constraints

1 code implementation24 Sep 2024 Jonas Nasimzada, Jens Kleesiek, Ken Herrmann, Alina Roitberg, Constantin Seibold

Utilizing advanced facial capture techniques, and leveraging public datasets like CelebV-HQ and FFHQ-UV for demographic diversity, our new synthetic dataset significantly enhances model training while ensuring privacy by anonymizing identities through facial replacements.

Dataset Generation Privacy Preserving +1

Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT

1 code implementation18 Sep 2024 Hamza Kalisch, Fabian Hörst, Ken Herrmann, Jens Kleesiek, Constantin Seibold

The autoPET III Challenge focuses on advancing automated segmentation of tumor lesions in PET/CT images in a multitracer multicenter setting, addressing the clinical need for quantitative, robust, and generalizable solutions.

Lesion Segmentation Segmentation

MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

1 code implementation30 Aug 2023 Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger

For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.

Anatomy Mixed Reality

Towards Unifying Anatomy Segmentation: Automated Generation of a Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines

1 code implementation25 Jul 2023 Alexander Jaus, Constantin Seibold, Kelsey Hermann, Alexandra Walter, Kristina Giske, Johannes Haubold, Jens Kleesiek, Rainer Stiefelhagen

We examine its plausibility and usefulness using three complementary checks: Human expert evaluation which approved the dataset, a Deep Learning usefulness benchmark on the BTCV dataset in which we achieve 85% dice score without using its training dataset, and medical validity checks.

Anatomy Pseudo Label +1

CellViT: Vision Transformers for Precise Cell Segmentation and Classification

3 code implementations27 Jun 2023 Fabian Hörst, Moritz Rempe, Lukas Heine, Constantin Seibold, Julius Keyl, Giulia Baldini, Selma Ugurel, Jens Siveke, Barbara Grünwald, Jan Egger, Jens Kleesiek

Nuclei detection and segmentation in hematoxylin and eosin-stained (H&E) tissue images are important clinical tasks and crucial for a wide range of applications.

Cell Detection Cell Segmentation +4

Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via Volumetric Pseudo-Labeling

1 code implementation6 Jun 2023 Constantin Seibold, Alexander Jaus, Matthias A. Fink, Moon Kim, Simon Reiß, Ken Herrmann, Jens Kleesiek, Rainer Stiefelhagen

Results: Our resulting segmentation models demonstrated remarkable performance on CXR, with a high average model-annotator agreement between two radiologists with mIoU scores of 0. 93 and 0. 85 for frontal and lateral anatomy, while inter-annotator agreement remained at 0. 95 and 0. 83 mIoU.

Anatomy Computed Tomography (CT) +2

Valuing Vicinity: Memory attention framework for context-based semantic segmentation in histopathology

1 code implementation21 Oct 2022 Oliver Ester, Fabian Hörst, Constantin Seibold, Julius Keyl, Saskia Ting, Nikolaos Vasileiadis, Jessica Schmitz, Philipp Ivanyi, Viktor Grünwald, Jan Hinrich Bräsen, Jan Egger, Jens Kleesiek

The segmentation of histopathological whole slide images into tumourous and non-tumourous types of tissue is a challenging task that requires the consideration of both local and global spatial contexts to classify tumourous regions precisely.

Decoder Segmentation +2

Detailed Annotations of Chest X-Rays via CT Projection for Report Understanding

no code implementations7 Oct 2022 Constantin Seibold, Simon Reiß, Saquib Sarfraz, Matthias A. Fink, Victoria Mayer, Jan Sellner, Moon Sung Kim, Klaus H. Maier-Hein, Jens Kleesiek, Rainer Stiefelhagen

To exploit anatomical structures in this scenario, we present a sophisticated automatic pipeline to gather and integrate human bodily structures from computed tomography datasets, which we incorporate in our PAXRay: A Projected dataset for the segmentation of Anatomical structures in X-Ray data.

Anatomy Phrase Grounding

A Comparative Analysis of Decision-Level Fusion for Multimodal Driver Behaviour Understanding

no code implementations10 Apr 2022 Alina Roitberg, Kunyu Peng, Zdravko Marinov, Constantin Seibold, David Schneider, Rainer Stiefelhagen

Visual recognition inside the vehicle cabin leads to safer driving and more intuitive human-vehicle interaction but such systems face substantial obstacles as they need to capture different granularities of driver behaviour while dealing with highly limited body visibility and changing illumination.

Reference-guided Pseudo-Label Generation for Medical Semantic Segmentation

no code implementations1 Dec 2021 Constantin Seibold, Simon Reiß, Jens Kleesiek, Rainer Stiefelhagen

Following this thought, we use a small number of labeled images as reference material and match pixels in an unlabeled image to the semantics of the best fitting pixel in a reference set.

Anatomy Pseudo Label +2

Let's Play for Action: Recognizing Activities of Daily Living by Learning from Life Simulation Video Games

1 code implementation12 Jul 2021 Alina Roitberg, David Schneider, Aulia Djamal, Constantin Seibold, Simon Reiß, Rainer Stiefelhagen

Recognizing Activities of Daily Living (ADL) is a vital process for intelligent assistive robots, but collecting large annotated datasets requires time-consuming temporal labeling and raises privacy concerns, e. g., if the data is collected in a real household.

Action Classification Activity Recognition +2

Pose2Drone: A Skeleton-Pose-based Framework for Human-Drone Interaction

1 code implementation27 May 2021 Zdravko Marinov, Stanka Vasileva, Qing Wang, Constantin Seibold, Jiaming Zhang, Rainer Stiefelhagen

Our framework provides the functionality to control the movement of the drone with simple arm gestures and to follow the user while keeping a safe distance.

Pose Estimation

Content and Colour Distillation for Learning Image Translations with the Spatial Profile Loss

1 code implementation1 Aug 2019 M. Saquib Sarfraz, Constantin Seibold, Haroon Khalid, Rainer Stiefelhagen

In this paper, we propose a novel method of computing the loss directly between the source and target images that enable proper distillation of shape/content and colour/style.

Image Super-Resolution Translation

Cannot find the paper you are looking for? You can Submit a new open access paper.