no code implementations • 21 Jan 2025 • Constantin Seibold, Hamza Kalisch, Lukas Heine, Simon Reiß, Jens Kleesiek
In this paper, we tackle the challenge of instance segmentation for foreign objects in chest radiographs, commonly seen in postoperative follow-ups with stents, pacemakers, or ingested objects in children.
no code implementations • 24 Oct 2024 • Alexander Jaus, Constantin Seibold, Simon Reiß, Zdravko Marinov, Keyi Li, Zeling Ye, Stefan Krieg, Jens Kleesiek, Rainer Stiefelhagen
We present Connected-Component~(CC)-Metrics, a novel semantic segmentation evaluation protocol, targeted to align existing semantic segmentation metrics to a multi-instance detection scenario in which each connected component matters.
1 code implementation • 16 Oct 2024 • Moritz Rempe, Lukas Heine, Constantin Seibold, Fabian Hörst, Jens Kleesiek
Medical data employed in research frequently comprises sensitive patient health information (PHI), which is subject to rigorous legal frameworks such as the General Data Protection Regulation (GDPR) or the Health Insurance Portability and Accountability Act (HIPAA).
1 code implementation • 25 Sep 2024 • Lukas Heine, Fabian Hörst, Jana Fragemann, Gijs Luijten, Jan Egger, Fin Bahnsen, M. Saquib Sarfraz, Jens Kleesiek, Constantin Seibold
In industries such as healthcare, finance, and manufacturing, analysis of unstructured textual data presents significant challenges for analysis and decision making.
1 code implementation • 24 Sep 2024 • Jonas Nasimzada, Jens Kleesiek, Ken Herrmann, Alina Roitberg, Constantin Seibold
Utilizing advanced facial capture techniques, and leveraging public datasets like CelebV-HQ and FFHQ-UV for demographic diversity, our new synthetic dataset significantly enhances model training while ensuring privacy by anonymizing identities through facial replacements.
1 code implementation • 18 Sep 2024 • Hamza Kalisch, Fabian Hörst, Ken Herrmann, Jens Kleesiek, Constantin Seibold
The autoPET III Challenge focuses on advancing automated segmentation of tumor lesions in PET/CT images in a multitracer multicenter setting, addressing the clinical need for quantitative, robust, and generalizable solutions.
1 code implementation • 8 Jul 2024 • Alexander Jaus, Constantin Seibold, Simon Reiß, Lukas Heine, Anton Schily, Moon Kim, Fin Hendrik Bahnsen, Ken Herrmann, Rainer Stiefelhagen, Jens Kleesiek
Pathological structures in medical images are typically deviations from the expected anatomy of a patient.
1 code implementation • 30 Aug 2023 • Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger
For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.
1 code implementation • 25 Jul 2023 • Alexander Jaus, Constantin Seibold, Kelsey Hermann, Alexandra Walter, Kristina Giske, Johannes Haubold, Jens Kleesiek, Rainer Stiefelhagen
We examine its plausibility and usefulness using three complementary checks: Human expert evaluation which approved the dataset, a Deep Learning usefulness benchmark on the BTCV dataset in which we achieve 85% dice score without using its training dataset, and medical validity checks.
1 code implementation • 30 Jun 2023 • Frederic Jonske, Moon Kim, Enrico Nasca, Janis Evers, Johannes Haubold, René Hosch, Felix Nensa, Michael Kamp, Constantin Seibold, Jan Egger, Jens Kleesiek
It is an open secret that ImageNet is treated as the panacea of pretraining.
3 code implementations • 27 Jun 2023 • Fabian Hörst, Moritz Rempe, Lukas Heine, Constantin Seibold, Julius Keyl, Giulia Baldini, Selma Ugurel, Jens Siveke, Barbara Grünwald, Jan Egger, Jens Kleesiek
Nuclei detection and segmentation in hematoxylin and eosin-stained (H&E) tissue images are important clinical tasks and crucial for a wide range of applications.
Ranked #1 on Cell Detection on PanNuke
1 code implementation • 6 Jun 2023 • Constantin Seibold, Alexander Jaus, Matthias A. Fink, Moon Kim, Simon Reiß, Ken Herrmann, Jens Kleesiek, Rainer Stiefelhagen
Results: Our resulting segmentation models demonstrated remarkable performance on CXR, with a high average model-annotator agreement between two radiologists with mIoU scores of 0. 93 and 0. 85 for frontal and lateral anatomy, while inter-annotator agreement remained at 0. 95 and 0. 83 mIoU.
1 code implementation • 24 Jan 2023 • Verena Jasmin Hallitschke, Tobias Schlumberger, Philipp Kataliakos, Zdravko Marinov, Moon Kim, Lars Heiliger, Constantin Seibold, Jens Kleesiek, Rainer Stiefelhagen
Recently, deep learning enabled the accurate segmentation of various diseases in medical imaging.
1 code implementation • CVPR 2023 • Simon Reiß, Constantin Seibold, Alexander Freytag, Erik Rodner, Rainer Stiefelhagen
A vast amount of images and pixel-wise annotations allowed our community to build scalable segmentation solutions for natural domains.
1 code implementation • 21 Oct 2022 • Oliver Ester, Fabian Hörst, Constantin Seibold, Julius Keyl, Saskia Ting, Nikolaos Vasileiadis, Jessica Schmitz, Philipp Ivanyi, Viktor Grünwald, Jan Hinrich Bräsen, Jan Egger, Jens Kleesiek
The segmentation of histopathological whole slide images into tumourous and non-tumourous types of tissue is a challenging task that requires the consideration of both local and global spatial contexts to classify tumourous regions precisely.
no code implementations • 7 Oct 2022 • Constantin Seibold, Simon Reiß, Saquib Sarfraz, Matthias A. Fink, Victoria Mayer, Jan Sellner, Moon Sung Kim, Klaus H. Maier-Hein, Jens Kleesiek, Rainer Stiefelhagen
To exploit anatomical structures in this scenario, we present a sophisticated automatic pipeline to gather and integrate human bodily structures from computed tomography datasets, which we incorporate in our PAXRay: A Projected dataset for the segmentation of Anatomical structures in X-Ray data.
no code implementations • 14 May 2022 • Constantin Seibold, Simon Reiß, M. Saquib Sarfraz, Rainer Stiefelhagen, Jens Kleesiek
We show that despite using unstructured medical report supervision, we perform on par with direct label supervision through a sophisticated inference setting.
Ranked #2 on Thoracic Disease Classification on ChestX-ray14
no code implementations • 29 Apr 2022 • Lukas Scholch, Jonas Steinhauser, Maximilian Beichter, Constantin Seibold, Kailun Yang, Merlin Knäble, Thorsten Schwarz, Alexander Mädche, Rainer Stiefelhagen
In this work, we propose a synthetic dataset, containing SVCs in the form of images as well as ground truths.
no code implementations • 10 Apr 2022 • Alina Roitberg, Kunyu Peng, Zdravko Marinov, Constantin Seibold, David Schneider, Rainer Stiefelhagen
Visual recognition inside the vehicle cabin leads to safer driving and more intuitive human-vehicle interaction but such systems face substantial obstacles as they need to capture different granularities of driver behaviour while dealing with highly limited body visibility and changing illumination.
1 code implementation • CVPR 2022 • M. Saquib Sarfraz, Marios Koulakis, Constantin Seibold, Rainer Stiefelhagen
Dimensionality reduction is crucial both for visualization and preprocessing high dimensional data for machine learning.
Ranked #3 on Data Augmentation on GA1457
no code implementations • 1 Dec 2021 • Constantin Seibold, Simon Reiß, Jens Kleesiek, Rainer Stiefelhagen
Following this thought, we use a small number of labeled images as reference material and match pixels in an unlabeled image to the semantics of the best fitting pixel in a reference set.
1 code implementation • 16 Aug 2021 • Haobin Tan, Chang Chen, Xinyu Luo, Jiaming Zhang, Constantin Seibold, Kailun Yang, Rainer Stiefelhagen
By recognizing the color of pedestrian traffic lights, our prototype can help the user to cross a street safely.
1 code implementation • 12 Jul 2021 • Alina Roitberg, David Schneider, Aulia Djamal, Constantin Seibold, Simon Reiß, Rainer Stiefelhagen
Recognizing Activities of Daily Living (ADL) is a vital process for intelligent assistive robots, but collecting large annotated datasets requires time-consuming temporal labeling and raises privacy concerns, e. g., if the data is collected in a real household.
1 code implementation • 27 May 2021 • Zdravko Marinov, Stanka Vasileva, Qing Wang, Constantin Seibold, Jiaming Zhang, Rainer Stiefelhagen
Our framework provides the functionality to control the movement of the drone with simple arm gestures and to follow the user while keeping a safe distance.
no code implementations • CVPR 2021 • Simon Reiß, Constantin Seibold, Alexander Freytag, Erik Rodner, Rainer Stiefelhagen
Pixel-wise segmentation is one of the most data and annotation hungry tasks in our field.
no code implementations • 2 Feb 2021 • Constantin Seibold, Matthias A. Fink, Charlotte Goos, Hans-Ulrich Kauczor, Heinz-Peter Schlemmer, Rainer Stiefelhagen, Jens Kleesiek
Detector-based spectral computed tomography is a recent dual-energy CT (DECT) technology that offers the possibility of obtaining spectral information.
1 code implementation • 30 Sep 2020 • Constantin Seibold, Jens Kleesiek, Heinz-Peter Schlemmer, Rainer Stiefelhagen
In this paper, we address the problem of weakly supervised identification and localization of abnormalities in chest radiographs.
1 code implementation • 1 Aug 2019 • M. Saquib Sarfraz, Constantin Seibold, Haroon Khalid, Rainer Stiefelhagen
In this paper, we propose a novel method of computing the loss directly between the source and target images that enable proper distillation of shape/content and colour/style.