1 code implementation • 26 Nov 2024 • Fabian Isensee, Yannick Kirchhoff, Lars Kraemer, Maximilian Rokuss, Constantin Ulrich, Klaus H. Maier-Hein
This paper presents our approach to scaling the nnU-Net framework for multi-structure segmentation on Cone Beam Computed Tomography (CBCT) images, specifically in the scope of the ToothFairy2 Challenge.
no code implementations • 12 Nov 2024 • Constantin Ulrich, Tassilo Wald, Emily Tempus, Maximilian Rokuss, Paul F. Jaeger, Klaus Maier-Hein
By open-sourcing RadioActive, we invite the research community to integrate their models and prompting techniques, ensuring continuous and transparent evaluation of interactive segmentation models in 3D medical imaging.
1 code implementation • 6 Nov 2024 • Pedro R. A. S. Bassi, Wenxuan Li, Yucheng Tang, Fabian Isensee, Zifu Wang, Jieneng Chen, Yu-Cheng Chou, Yannick Kirchhoff, Maximilian Rokuss, Ziyan Huang, Jin Ye, Junjun He, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus H. Maier-Hein, Paul Jaeger, Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Yong Xia, Zhaohu Xing, Lei Zhu, Yousef Sadegheih, Afshin Bozorgpour, Pratibha Kumari, Reza Azad, Dorit Merhof, Pengcheng Shi, Ting Ma, Yuxin Du, Fan Bai, Tiejun Huang, Bo Zhao, Haonan Wang, Xiaomeng Li, Hanxue Gu, Haoyu Dong, Jichen Yang, Maciej A. Mazurowski, Saumya Gupta, Linshan Wu, Jiaxin Zhuang, Hao Chen, Holger Roth, Daguang Xu, Matthew B. Blaschko, Sergio Decherchi, Andrea Cavalli, Alan L. Yuille, Zongwei Zhou
We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
no code implementations • 30 Oct 2024 • Tassilo Wald, Constantin Ulrich, Stanislav Lukyanenko, Andrei Goncharov, Alberto Paderno, Leander Maerkisch, Paul F. Jäger, Klaus Maier-Hein
Self-Supervised Learning (SSL) presents an exciting opportunity to unlock the potential of vast, untapped clinical datasets, for various downstream applications that suffer from the scarcity of labeled data.
1 code implementation • 30 Oct 2024 • Tassilo Wald, Constantin Ulrich, Gregor Köhler, David Zimmerer, Stefan Denner, Michael Baumgartner, Fabian Isensee, Priyank Jaini, Klaus H. Maier-Hein
In this paper, we propose to solve this through semantic RSMs, which are invariant to spatial permutation.
1 code implementation • 20 Sep 2024 • Maximilian Rokuss, Yannick Kirchhoff, Saikat Roy, Balint Kovacs, Constantin Ulrich, Tassilo Wald, Maximilian Zenk, Stefan Denner, Fabian Isensee, Philipp Vollmuth, Jens Kleesiek, Klaus Maier-Hein
Accurate segmentation of Multiple Sclerosis (MS) lesions in longitudinal MRI scans is crucial for monitoring disease progression and treatment efficacy.
1 code implementation • 16 Sep 2024 • Balint Kovacs, Shuhan Xiao, Maximilian Rokuss, Constantin Ulrich, Fabian Isensee, Klaus H. Maier-Hein
The third autoPET challenge introduced a new data-centric task this year, shifting the focus from model development to improving metastatic lesion segmentation on PET/CT images through data quality and handling strategies.
1 code implementation • 14 Sep 2024 • Maximilian Rokuss, Balint Kovacs, Yannick Kirchhoff, Shuhan Xiao, Constantin Ulrich, Klaus H. Maier-Hein, Fabian Isensee
Automated lesion segmentation in PET/CT scans is crucial for improving clinical workflows and advancing cancer diagnostics.
no code implementations • 24 Apr 2024 • Constantin Ulrich, Catherine Knobloch, Julius C. Holzschuh, Tassilo Wald, Maximilian R. Rokuss, Maximilian Zenk, Maximilian Fischer, Michael Baumgartner, Fabian Isensee, Klaus H. Maier-Hein
This limitation leads to false predictions when applied to body regions beyond the FOV of the training data.
2 code implementations • 15 Apr 2024 • Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus Maier-Hein, Paul F. Jaeger
The release of nnU-Net marked a paradigm shift in 3D medical image segmentation, demonstrating that a properly configured U-Net architecture could still achieve state-of-the-art results.
1 code implementation • 3 Apr 2024 • Yannick Kirchhoff, Maximilian R. Rokuss, Saikat Roy, Balint Kovacs, Constantin Ulrich, Tassilo Wald, Maximilian Zenk, Philipp Vollmuth, Jens Kleesiek, Fabian Isensee, Klaus Maier-Hein
Accurately segmenting thin tubular structures, such as vessels, nerves, roads or concrete cracks, is a crucial task in computer vision.
1 code implementation • 15 Dec 2023 • Xiangde Luo, Jia Fu, Yunxin Zhong, Shuolin Liu, Bing Han, Mehdi Astaraki, Simone Bendazzoli, Iuliana Toma-Dasu, Yiwen Ye, Ziyang Chen, Yong Xia, Yanzhou Su, Jin Ye, Junjun He, Zhaohu Xing, Hongqiu Wang, Lei Zhu, Kaixiang Yang, Xin Fang, Zhiwei Wang, Chan Woong Lee, Sang Joon Park, Jaehee Chun, Constantin Ulrich, Klaus H. Maier-Hein, Nchongmaje Ndipenoch, Alina Miron, Yongmin Li, Yimeng Zhang, Yu Chen, Lu Bai, Jinlong Huang, Chengyang An, Lisheng Wang, Kaiwen Huang, Yunqi Gu, Tao Zhou, Mu Zhou, Shichuan Zhang, Wenjun Liao, Guotai Wang, Shaoting Zhang
The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis.
no code implementations • 14 Sep 2023 • Gregor Koehler, Tassilo Wald, Constantin Ulrich, David Zimmerer, Paul F. Jaeger, Jörg K. H. Franke, Simon Kohl, Fabian Isensee, Klaus H. Maier-Hein
Using medical image segmentation as the evaluation environment, we show that latent feature recycling enables the network to iteratively refine initial predictions even beyond the iterations seen during training, converging towards an improved decision.
no code implementations • 5 Jul 2023 • Tassilo Wald, Constantin Ulrich, Fabian Isensee, David Zimmerer, Gregor Koehler, Michael Baumgartner, Klaus H. Maier-Hein
Given an ensemble of independently trained models, this results in correlated predictions and common failure modes.
no code implementations • 9 Apr 2023 • Saikat Roy, Gregor Koehler, Michael Baumgartner, Constantin Ulrich, Jens Petersen, Fabian Isensee, Klaus Maier-Hein
Owing to success in the data-rich domain of natural images, Transformers have recently become popular in medical image segmentation.
1 code implementation • 25 Mar 2023 • Constantin Ulrich, Fabian Isensee, Tassilo Wald, Maximilian Zenk, Michael Baumgartner, Klaus H. Maier-Hein
Our findings offer a new direction for the medical imaging community to effectively utilize the wealth of available data for improved segmentation performance.
1 code implementation • 17 Mar 2023 • Saikat Roy, Gregor Koehler, Constantin Ulrich, Michael Baumgartner, Jens Petersen, Fabian Isensee, Paul F. Jaeger, Klaus Maier-Hein
This leads to state-of-the-art performance on 4 tasks on CT and MRI modalities and varying dataset sizes, representing a modernized deep architecture for medical image segmentation.
Ranked #1 on Medical Image Segmentation on AMOS
no code implementations • 23 Aug 2022 • Fabian Isensee, Constantin Ulrich, Tassilo Wald, Klaus H. Maier-Hein
Semantic segmentation is one of the most popular research areas in medical image computing.