no code implementations • 14 Mar 2023 • Alicia Durrer, Julia Wolleb, Florentin Bieder, Tim Sinnecker, Matthias Weigel, Robin Sandkühler, Cristina Granziera, Özgür Yaldizli, Philippe C. Cattin
We map images from the source contrast to the target contrast for both directions, from 3 T to 1. 5 T and from 1. 5 T to 3 T. As we only want to change the contrast, not the anatomical information, our method uses the original image to guide the image-to-image translation process by adding structural information.
1 code implementation • 9 Nov 2022 • Nataliia Molchanova, Vatsal Raina, Andrey Malinin, Francesco La Rosa, Henning Muller, Mark Gales, Cristina Granziera, Mara Graziani, Meritxell Bach Cuadra
This paper focuses on the uncertainty estimation for white matter lesions (WML) segmentation in magnetic resonance imaging (MRI).
2 code implementations • 30 Jun 2022 • Andrey Malinin, Andreas Athanasopoulos, Muhamed Barakovic, Meritxell Bach Cuadra, Mark J. F. Gales, Cristina Granziera, Mara Graziani, Nikolay Kartashev, Konstantinos Kyriakopoulos, Po-Jui Lu, Nataliia Molchanova, Antonis Nikitakis, Vatsal Raina, Francesco La Rosa, Eli Sivena, Vasileios Tsarsitalidis, Efi Tsompopoulou, Elena Volf
This creates a need to be able to assess how robustly ML models generalize as well as the quality of their uncertainty estimates.
no code implementations • 19 Jan 2022 • Francesco La Rosa, Maxence Wynen, Omar Al-Louzi, Erin S Beck, Till Huelnhagen, Pietro Maggi, Jean-Philippe Thiran, Tobias Kober, Russell T Shinohara, Pascal Sati, Daniel S Reich, Cristina Granziera, Martina Absinta, Meritxell Bach Cuadra
Recently, advanced MS lesional imaging biomarkers such as cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher specificity in differential diagnosis.
1 code implementation • 13 Oct 2021 • Julia Wolleb, Robin Sandkühler, Florentin Bieder, Muhamed Barakovic, Nouchine Hadjikhani, Athina Papadopoulou, Özgür Yaldizli, Jens Kuhle, Cristina Granziera, Philippe C. Cattin
The limited availability of large image datasets, mainly due to data privacy and differences in acquisition protocols or hardware, is a significant issue in the development of accurate and generalizable machine learning methods in medicine.
no code implementations • 10 Sep 2018 • Francesco La Rosa, Mário João Fartaria, Tobias Kober, Jonas Richiardi, Cristina Granziera, Jean-Philippe Thiran, Meritxell Bach Cuadra
In this work, we present a comparison of a shallow and a deep learning architecture for the automated segmentation of white matter lesions in MR images of multiple sclerosis patients.