2 code implementations • 27 Mar 2024 • Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, Quoc V. Le
Empirically, we demonstrate that LLM agents can outperform crowdsourced human annotators - on a set of ~16k individual facts, SAFE agrees with crowdsourced human annotators 72% of the time, and on a random subset of 100 disagreement cases, SAFE wins 76% of the time.
1 code implementation • 7 Aug 2023 • Jerry Wei, Da Huang, Yifeng Lu, Denny Zhou, Quoc V. Le
Adding these data in a lightweight finetuning step can significantly reduce sycophantic behavior on held-out prompts.
no code implementations • 29 Jun 2023 • Da Huang, Akram Al-Hourani, Kandeepan Sithamparanathan, Wayne S. T. Rowe
Devices authentication is one crucial aspect of any communication system.
no code implementations • 29 May 2023 • Yanqi Zhou, Nan Du, Yanping Huang, Daiyi Peng, Chang Lan, Da Huang, Siamak Shakeri, David So, Andrew Dai, Yifeng Lu, Zhifeng Chen, Quoc Le, Claire Cui, James Laudon, Jeff Dean
Using this insight, we develop a complex block, named Brainformer, that consists of a diverse sets of layers such as sparsely gated feed-forward layers, dense feed-forward layers, attention layers, and various forms of layer normalization and activation functions.
no code implementations • 15 May 2023 • Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, Quoc V. Le
We present symbol tuning - finetuning language models on in-context input-label pairs where natural language labels (e. g., "positive/negative sentiment") are replaced with arbitrary symbols (e. g., "foo/bar").
no code implementations • 7 Mar 2023 • Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu, Da Huang, Denny Zhou, Tengyu Ma
We next study semantically-unrelated label ICL (SUL-ICL), in which labels are semantically unrelated to their inputs (e. g., foo/bar instead of negative/positive), thereby forcing language models to learn the input-label mappings shown in in-context exemplars in order to perform the task.
1 code implementation • NeurIPS 2023 • Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, Quoc V. Le
On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2. 3x.
no code implementations • 12 Sep 2022 • Rohan Anil, Sandra Gadanho, Da Huang, Nijith Jacob, Zhuoshu Li, Dong Lin, Todd Phillips, Cristina Pop, Kevin Regan, Gil I. Shamir, Rakesh Shivanna, Qiqi Yan
For industrial-scale advertising systems, prediction of ad click-through rate (CTR) is a central problem.
1 code implementation • 15 Apr 2022 • Chengrun Yang, Gabriel Bender, Hanxiao Liu, Pieter-Jan Kindermans, Madeleine Udell, Yifeng Lu, Quoc Le, Da Huang
The best neural architecture for a given machine learning problem depends on many factors: not only the complexity and structure of the dataset, but also on resource constraints including latency, compute, energy consumption, etc.
no code implementations • 23 Jun 2021 • FangYuan Lei, Da Huang, Jianjian Jiang, Ruijun Ma, Senhong Wang, Jiangzhong Cao, Yusen Lin, Qingyun Dai
In deep learning area, large-scale image datasets bring a breakthrough in the success of object recognition and retrieval.
no code implementations • 17 Feb 2021 • Yanqi Zhou, Xuanyi Dong, Berkin Akin, Mingxing Tan, Daiyi Peng, Tianjian Meng, Amir Yazdanbakhsh, Da Huang, Ravi Narayanaswami, James Laudon
In our work, we target the optimization of hardware and software configurations on an industry-standard edge accelerator.
no code implementations • 6 Nov 2018 • Jiangtao Feng, Lingpeng Kong, Po-Sen Huang, Chong Wang, Da Huang, Jiayuan Mao, Kan Qiao, Dengyong Zhou
We also design an efficient dynamic programming algorithm to decode segments that allows the model to be trained faster than the existing neural phrase-based machine translation method by Huang et al. (2018).