Search Results for author: Da Ju

Found 18 papers, 6 papers with code

To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning

no code implementations21 Oct 2024 Da Ju, Song Jiang, Andrew Cohen, Aaron Foss, Sasha Mitts, Arman Zharmagambetov, Brandon Amos, Xian Li, Justine T Kao, Maryam Fazel-Zarandi, Yuandong Tian

In this paper, we propose To the Globe (TTG), a real-time demo system that takes natural language requests from users, translates it to symbolic form via a fine-tuned Large Language Model, and produces optimal travel itineraries with Mixed Integer Linear Programming solvers.

Form Language Modelling +1

Are Female Carpenters like Blue Bananas? A Corpus Investigation of Occupation Gender Typicality

no code implementations6 Aug 2024 Da Ju, Karen Ulrich, Adina Williams

People tend to use language to mention surprising properties of events: for example, when a banana is blue, we are more likely to mention color than when it is yellow.

Improving Open Language Models by Learning from Organic Interactions

no code implementations7 Jun 2023 Jing Xu, Da Ju, Joshua Lane, Mojtaba Komeili, Eric Michael Smith, Megan Ung, Morteza Behrooz, William Ngan, Rashel Moritz, Sainbayar Sukhbaatar, Y-Lan Boureau, Jason Weston, Kurt Shuster

We present BlenderBot 3x, an update on the conversational model BlenderBot 3, which is now trained using organic conversation and feedback data from participating users of the system in order to improve both its skills and safety.

Learning from data in the mixed adversarial non-adversarial case: Finding the helpers and ignoring the trolls

no code implementations5 Aug 2022 Da Ju, Jing Xu, Y-Lan Boureau, Jason Weston

The promise of interaction between intelligent conversational agents and humans is that models can learn from such feedback in order to improve.

BlenderBot 3: a deployed conversational agent that continually learns to responsibly engage

5 code implementations5 Aug 2022 Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan Ung, Moya Chen, Kushal Arora, Joshua Lane, Morteza Behrooz, William Ngan, Spencer Poff, Naman Goyal, Arthur Szlam, Y-Lan Boureau, Melanie Kambadur, Jason Weston

We present BlenderBot 3, a 175B parameter dialogue model capable of open-domain conversation with access to the internet and a long-term memory, and having been trained on a large number of user defined tasks.

Continual Learning

Staircase Attention for Recurrent Processing of Sequences

1 code implementation8 Jun 2021 Da Ju, Stephen Roller, Sainbayar Sukhbaatar, Jason Weston

Attention mechanisms have become a standard tool for sequence modeling tasks, in particular by stacking self-attention layers over the entire input sequence as in the Transformer architecture.

Language Modeling Language Modelling

Bot-Adversarial Dialogue for Safe Conversational Agents

no code implementations NAACL 2021 Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, Emily Dinan

Conversational agents trained on large unlabeled corpora of human interactions will learn patterns and mimic behaviors therein, which include offensive or otherwise toxic behavior.

Not All Memories are Created Equal: Learning to Forget by Expiring

1 code implementation13 May 2021 Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen Roller, Arthur Szlam, Jason Weston, Angela Fan

We demonstrate that Expire-Span can help models identify and retain critical information and show it can achieve strong performance on reinforcement learning tasks specifically designed to challenge this functionality.

All Language Modeling +1

Not All Memories are Created Equal: Learning to Expire

1 code implementation1 Jan 2021 Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen Roller, Arthur Szlam, Jason E Weston, Angela Fan

We demonstrate that Expire-Span can help models identify and retain critical information and show it can achieve state of the art results on long-context language modeling, reinforcement learning, and algorithmic tasks.

All Language Modeling +1

Recipes for Safety in Open-domain Chatbots

no code implementations14 Oct 2020 Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, Emily Dinan

Models trained on large unlabeled corpora of human interactions will learn patterns and mimic behaviors therein, which include offensive or otherwise toxic behavior and unwanted biases.

Multi-Modal Open-Domain Dialogue

no code implementations EMNLP 2021 Kurt Shuster, Eric Michael Smith, Da Ju, Jason Weston

Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020).

Visual Dialog

Open-Domain Conversational Agents: Current Progress, Open Problems, and Future Directions

no code implementations22 Jun 2020 Stephen Roller, Y-Lan Boureau, Jason Weston, Antoine Bordes, Emily Dinan, Angela Fan, David Gunning, Da Ju, Margaret Li, Spencer Poff, Pratik Ringshia, Kurt Shuster, Eric Michael Smith, Arthur Szlam, Jack Urbanek, Mary Williamson

We present our view of what is necessary to build an engaging open-domain conversational agent: covering the qualities of such an agent, the pieces of the puzzle that have been built so far, and the gaping holes we have not filled yet.

Continual Learning

All-in-One Image-Grounded Conversational Agents

no code implementations28 Dec 2019 Da Ju, Kurt Shuster, Y-Lan Boureau, Jason Weston

As single-task accuracy on individual language and image tasks has improved substantially in the last few years, the long-term goal of a generally skilled agent that can both see and talk becomes more feasible to explore.

All

The Dialogue Dodecathlon: Open-Domain Knowledge and Image Grounded Conversational Agents

no code implementations ACL 2020 Kurt Shuster, Da Ju, Stephen Roller, Emily Dinan, Y-Lan Boureau, Jason Weston

We introduce dodecaDialogue: a set of 12 tasks that measures if a conversational agent can communicate engagingly with personality and empathy, ask questions, answer questions by utilizing knowledge resources, discuss topics and situations, and perceive and converse about images.

High-Level Strategy Selection under Partial Observability in StarCraft: Brood War

no code implementations21 Nov 2018 Jonas Gehring, Da Ju, Vegard Mella, Daniel Gant, Nicolas Usunier, Gabriel Synnaeve

We consider the problem of high-level strategy selection in the adversarial setting of real-time strategy games from a reinforcement learning perspective, where taking an action corresponds to switching to the respective strategy.

reinforcement-learning Reinforcement Learning +3

Cannot find the paper you are looking for? You can Submit a new open access paper.