Search Results for author: Dagan Feng

Found 35 papers, 16 papers with code

SGSeg: Enabling Text-free Inference in Language-guided Segmentation of Chest X-rays via Self-guidance

1 code implementation7 Sep 2024 Shuchang Ye, Mingyuan Meng, Mingjian Li, Dagan Feng, Jinman Kim

Segmentation of infected areas in chest X-rays is pivotal for facilitating the accurate delineation of pulmonary structures and pathological anomalies.

Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration

1 code implementation CVPR 2024 Mingyuan Meng, Dagan Feng, Lei Bi, Jinman Kim

However, due to the high computation/memory loads of self-attention, transformers are typically used at downsampled feature resolutions and cannot capture fine-grained long-range dependence at the full image resolution.

Deformable Medical Image Registration Image Registration +2

Dynamic Traceback Learning for Medical Report Generation

no code implementations24 Jan 2024 Shuchang Ye, Mingyuan Meng, Mingjian Li, Dagan Feng, Usman Naseem, Jinman Kim

Automated medical report generation has the potential to significantly reduce the workload associated with the time-consuming process of medical reporting.

Medical Report Generation Representation Learning

Full-resolution MLPs Empower Medical Dense Prediction

1 code implementation28 Nov 2023 Mingyuan Meng, Yuxin Xue, Dagan Feng, Lei Bi, Jinman Kim

This textural information is crucial for medical dense prediction as it can differentiate the subtle human anatomy in medical images.

Anatomy Image Restoration

AutoFuse: Automatic Fusion Networks for Deformable Medical Image Registration

1 code implementation11 Sep 2023 Mingyuan Meng, Michael Fulham, Dagan Feng, Lei Bi, Jinman Kim

However, DNN-based registration needs to explore the spatial information of each image and fuse this information to characterize spatial correspondence.

Deformable Medical Image Registration Image Registration +1

Non-iterative Coarse-to-fine Transformer Networks for Joint Affine and Deformable Image Registration

1 code implementation7 Jul 2023 Mingyuan Meng, Lei Bi, Michael Fulham, Dagan Feng, Jinman Kim

Recently, Non-Iterative Coarse-to-finE (NICE) registration methods have been proposed to perform coarse-to-fine registration in a single network and showed advantages in both registration accuracy and runtime.

Image Registration

Merging-Diverging Hybrid Transformer Networks for Survival Prediction in Head and Neck Cancer

1 code implementation7 Jul 2023 Mingyuan Meng, Lei Bi, Michael Fulham, Dagan Feng, Jinman Kim

In view of this, we propose a merging-diverging learning framework for survival prediction from multi-modality images.

Decoder RAG +2

AdaMSS: Adaptive Multi-Modality Segmentation-to-Survival Learning for Survival Outcome Prediction from PET/CT Images

2 code implementations17 May 2023 Mingyuan Meng, Bingxin Gu, Michael Fulham, Shaoli Song, Dagan Feng, Lei Bi, Jinman Kim

Instead of adopting MTL, we propose a novel Segmentation-to-Survival Learning (SSL) strategy, where our AdaMSS is trained for tumor segmentation and survival prediction sequentially in two stages.

Multi-Task Learning Segmentation +2

A Review of Predictive and Contrastive Self-supervised Learning for Medical Images

no code implementations10 Feb 2023 Wei-Chien Wang, Euijoon Ahn, Dagan Feng, Jinman Kim

Over the last decade, supervised deep learning on manually annotated big data has been progressing significantly on computer vision tasks.

Self-Supervised Learning

Z-SSMNet: A Zonal-aware Self-Supervised Mesh Network for Prostate Cancer Detection and Diagnosis in bpMRI

no code implementations12 Dec 2022 Yuan Yuan, Euijoon Ahn, Dagan Feng, Mohamad Khadra, Jinman Kim

However, existing state of the art AI algorithms which are based on deep learning technology are often limited to 2D images that fails to capture inter-slice correlations in 3D volumetric images.

Self-Supervised Learning

Brain Tumor Sequence Registration with Non-iterative Coarse-to-fine Networks and Dual Deep Supervision

1 code implementation15 Nov 2022 Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim

In this study, we focus on brain tumor sequence registration between pre-operative and follow-up Magnetic Resonance Imaging (MRI) scans of brain glioma patients, in the context of Brain Tumor Sequence Registration challenge (BraTS-Reg 2022).

Radiomics-enhanced Deep Multi-task Learning for Outcome Prediction in Head and Neck Cancer

2 code implementations10 Nov 2022 Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim

Recently, deep learning methods have been proposed to perform end-to-end outcome prediction so as to remove the reliance on manual segmentation.

Multi-Task Learning Segmentation +1

Non-iterative Coarse-to-fine Registration based on Single-pass Deep Cumulative Learning

1 code implementation25 Jun 2022 Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim

Recently, iterative deep registration methods have been used to alleviate this limitation, where the transformations are iteratively learned in a coarse-to-fine manner.

Image Registration

Unsupervised Difference Learning for Noisy Rigid Image Alignment

no code implementations24 May 2022 Yu-Xuan Chen, Dagan Feng, Hong-Bin Shen

Rigid image alignment is a fundamental task in computer vision, while the traditional algorithms are either too sensitive to noise or time-consuming.

The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients

no code implementations13 Dec 2021 Bhakti Baheti, Satrajit Chakrabarty, Hamed Akbari, Michel Bilello, Benedikt Wiestler, Julian Schwarting, Evan Calabrese, Jeffrey Rudie, Syed Abidi, Mina Mousa, Javier Villanueva-Meyer, Brandon K. K. Fields, Florian Kofler, Russell Takeshi Shinohara, Juan Eugenio Iglesias, Tony C. W. Mok, Albert C. S. Chung, Marek Wodzinski, Artur Jurgas, Niccolo Marini, Manfredo Atzori, Henning Muller, Christoph Grobroehmer, Hanna Siebert, Lasse Hansen, Mattias P. Heinrich, Luca Canalini, Jan Klein, Annika Gerken, Stefan Heldmann, Alessa Hering, Horst K. Hahn, Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim, Ramy A. Zeineldin, Mohamed E. Karar, Franziska Mathis-Ullrich, Oliver Burgert, Javid Abderezaei, Aymeric Pionteck, Agamdeep Chopra, Mehmet Kurt, Kewei Yan, Yonghong Yan, Zhe Tang, Jianqiang Ma, Sahar Almahfouz Nasser, Nikhil Cherian Kurian, Mohit Meena, Saqib Shamsi, Amit Sethi, Nicholas J. Tustison, Brian B. Avants, Philip Cook, James C. Gee, Lin Tian, Hastings Greer, Marc Niethammer, Andrew Hoopes, Malte Hoffmann, Adrian V. Dalca, Stergios Christodoulidis, Theo Estiene, Maria Vakalopoulou, Nikos Paragios, Daniel S. Marcus, Christos Davatzikos, Aristeidis Sotiras, Bjoern Menze, Spyridon Bakas, Diana Waldmannstetter

Registration of longitudinal brain MRI scans containing pathologies is challenging due to dramatic changes in tissue appearance.

Descriptive Image Registration +1

Unsupervised Landmark Detection Based Spatiotemporal Motion Estimation for 4D Dynamic Medical Images

2 code implementations30 Sep 2021 Yuyu Guo, Lei Bi, Dongming Wei, Liyun Chen, Zhengbin Zhu, Dagan Feng, Ruiyan Zhang, Qian Wang, Jinman Kim

In the first stage, we process the raw dense image to extract sparse landmarks to represent the target organ anatomical topology and discard the redundant information that is unnecessary for motion estimation.

Anatomy Motion Estimation +1

A Spatial Guided Self-supervised Clustering Network for Medical Image Segmentation

1 code implementation11 Jul 2021 Euijoon Ahn, Dagan Feng, Jinman Kim

Hence, we propose a new spatial guided self-supervised clustering network (SGSCN) for medical image segmentation, where we introduce multiple loss functions designed to aid in grouping image pixels that are spatially connected and have similar feature representations.

Clustering Image Segmentation +3

Predicting Distant Metastases in Soft-Tissue Sarcomas from PET-CT scans using Constrained Hierarchical Multi-Modality Feature Learning

no code implementations23 Apr 2021 Yige Peng, Lei Bi, Ashnil Kumar, Michael Fulham, Dagan Feng, Jinman Kim

Most CNNs are designed for single-modality imaging data (CT or PET alone) and do not exploit the information embedded in PET-CT where there is a combination of an anatomical and functional imaging modality.

Management STS

A Spatiotemporal Volumetric Interpolation Network for 4D Dynamic Medical Image

1 code implementation CVPR 2020 Yuyu Guo, Lei Bi, Euijoon Ahn, Dagan Feng, Qian Wang, Jinman Kim

SVIN introduces dual networks: first is the spatiotemporal motion network that leverages the 3D convolutional neural network (CNN) for unsupervised parametric volumetric registration to derive spatiotemporal motion field from two-image volumes; the second is the sequential volumetric interpolation network, which uses the derived motion field to interpolate image volumes, together with a new regression-based module to characterize the periodic motion cycles in functional organ structures.

Anatomy

IntersectGAN: Learning Domain Intersection for Generating Images with Multiple Attributes

no code implementations21 Sep 2019 Zehui Yao, Boyan Zhang, Zhiyong Wang, Wanli Ouyang, Dong Xu, Dagan Feng

For example, given two image domains $X_1$ and $X_2$ with certain attributes, the intersection $X_1 \cap X_2$ denotes a new domain where images possess the attributes from both $X_1$ and $X_2$ domains.

Attribute

Unsupervised Feature Learning with K-means and An Ensemble of Deep Convolutional Neural Networks for Medical Image Classification

no code implementations7 Jun 2019 Euijoon Ahn, Ashnil Kumar, Dagan Feng, Michael Fulham, Jinman Kim

Hence, we propose a new unsupervised feature learning method that learns feature representations to then differentiate dissimilar medical images using an ensemble of different convolutional neural networks (CNNs) and K-means clustering.

Clustering General Classification +2

Unsupervised Deep Transfer Feature Learning for Medical Image Classification

no code implementations15 Mar 2019 Euijoon Ahn, Ashnil Kumar, Dagan Feng, Michael Fulham, Jinman Kim

The accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale, annotated training data.

General Classification Image Classification +1

Automated Segmentation of the Optic Disk and Cup using Dual-Stage Fully Convolutional Networks

no code implementations13 Feb 2019 Lei Bi, Yuyu Guo, Qian Wang, Dagan Feng, Michael Fulham, Jinman Kim

Our approach leverages deep residual architectures and FCNs and learns and infers the location of the optic cup and disk in a step-wise manner with fine-grained details.

Segmentation

Co-Learning Feature Fusion Maps from PET-CT Images of Lung Cancer

1 code implementation5 Oct 2018 Ashnil Kumar, Michael Fulham, Dagan Feng, Jinman Kim

Our aim is to improve fusion of the complementary information in multi-modality PET-CT with a new supervised convolutional neural network (CNN) that learns to fuse complementary information for multi-modality medical image analysis.

Tumor Segmentation

Improving Automatic Skin Lesion Segmentation using Adversarial Learning based Data Augmentation

no code implementations23 Jul 2018 Lei Bi, Dagan Feng, Jinman Kim

Segmentation of skin lesions is considered as an important step in computer aided diagnosis (CAD) for automated melanoma diagnosis.

Data Augmentation Generative Adversarial Network +4

3D Global Convolutional Adversarial Network\\ for Prostate MR Volume Segmentation

no code implementations18 Jul 2018 Haozhe Jia, Yang song, Donghao Zhang, Heng Huang, Dagan Feng, Michael Fulham, Yong Xia, Weidong Cai

In this paper, we propose a 3D Global Convolutional Adversarial Network (3D GCA-Net) to address efficient prostate MR volume segmentation.

Decoder General Classification +1

Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

no code implementations16 Jul 2018 Euijoon Ahn, Jinman Kim, Ashnil Kumar, Michael Fulham, Dagan Feng

The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems.

Medical Image Retrieval Retrieval

Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs)

2 code implementations31 Jul 2017 Lei Bi, Jinman Kim, Ashnil Kumar, Dagan Feng, Michael Fulham

Positron emission tomography (PET) image synthesis plays an important role, which can be used to boost the training data for computer aided diagnosis systems.

Computed Tomography (CT) Image Generation

Automatic Liver Lesion Detection using Cascaded Deep Residual Networks

no code implementations10 Apr 2017 Lei Bi, Jinman Kim, Ashnil Kumar, Dagan Feng

Recently, deep learning methods based on fully convolutional networks (FCNs) have been successful in many segmentation problems primarily because they leverage a large labelled dataset to hierarchically learn the features that best correspond to the shallow visual appearance as well as the deep semantics of the areas to be segmented.

Lesion Detection Segmentation +1

Morphometry-Based Longitudinal Neurodegeneration Simulation with MR Imaging

no code implementations24 Aug 2015 Si-Qi Liu, Sidong Liu, Sonia Pujol, Ron Kikinis, Dagan Feng, Michael Fulham, Weidong Cai

We present a longitudinal MR simulation framework which simulates the future neurodegenerative progression by outputting the predicted follow-up MR image and the voxel-based morphometry (VBM) map.

Cannot find the paper you are looking for? You can Submit a new open access paper.