1 code implementation • 27 Jan 2025 • Chuan Tian, C. Megan Urry, Aritra Ghosh, Daisuke Nagai, Tonima T. Ananna, Meredith C. Powell, Connor Auge, Aayush Mishra, David B. Sanders, Nico Cappelluti, Kevin Schawinski
We present a composite machine learning framework to estimate posterior probability distributions of bulge-to-total light ratio, half-light radius, and flux for Active Galactic Nucleus (AGN) host galaxies within $z<1. 4$ and $m<23$ in the Hyper Supreme-Cam Wide survey.
1 code implementation • 5 Sep 2022 • Digvijay Wadekar, Leander Thiele, J. Colin Hill, Shivam Pandey, Francisco Villaescusa-Navarro, David N. Spergel, Miles Cranmer, Daisuke Nagai, Daniel Anglés-Alcázar, Shirley Ho, Lars Hernquist
Our results can be useful for using upcoming SZ surveys (e. g., SO, CMB-S4) and galaxy surveys (e. g., DESI and Rubin) to constrain the nature of baryonic feedback.
no code implementations • 4 Jan 2022 • Francisco Villaescusa-Navarro, Shy Genel, Daniel Anglés-Alcázar, Lucia A. Perez, Pablo Villanueva-Domingo, Digvijay Wadekar, Helen Shao, Faizan G. Mohammad, Sultan Hassan, Emily Moser, Erwin T. Lau, Luis Fernando Machado Poletti Valle, Andrina Nicola, Leander Thiele, Yongseok Jo, Oliver H. E. Philcox, Benjamin D. Oppenheimer, Megan Tillman, ChangHoon Hahn, Neerav Kaushal, Alice Pisani, Matthew Gebhardt, Ana Maria Delgado, Joyce Caliendo, Christina Kreisch, Kaze W. K. Wong, William R. Coulton, Michael Eickenberg, Gabriele Parimbelli, Yueying Ni, Ulrich P. Steinwandel, Valentina La Torre, Romeel Dave, Nicholas Battaglia, Daisuke Nagai, David N. Spergel, Lars Hernquist, Blakesley Burkhart, Desika Narayanan, Benjamin Wandelt, Rachel S. Somerville, Greg L. Bryan, Matteo Viel, Yin Li, Vid Irsic, Katarina Kraljic, Mark Vogelsberger
The Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning.
1 code implementation • 22 Sep 2021 • Francisco Villaescusa-Navarro, Shy Genel, Daniel Angles-Alcazar, Leander Thiele, Romeel Dave, Desika Narayanan, Andrina Nicola, Yin Li, Pablo Villanueva-Domingo, Benjamin Wandelt, David N. Spergel, Rachel S. Somerville, Jose Manuel Zorrilla Matilla, Faizan G. Mohammad, Sultan Hassan, Helen Shao, Digvijay Wadekar, Michael Eickenberg, Kaze W. K. Wong, Gabriella Contardo, Yongseok Jo, Emily Moser, Erwin T. Lau, Luis Fernando Machado Poletti Valle, Lucia A. Perez, Daisuke Nagai, Nicholas Battaglia, Mark Vogelsberger
We present the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) Multifield Dataset, CMD, a collection of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars from 2, 000 distinct simulated universes at several cosmic times.
no code implementations • 25 Nov 2020 • Luis Fernando Machado Poletti Valle, Camille Avestruz, David J. Barnes, Arya Farahi, Erwin T. Lau, Daisuke Nagai
In this study we explore a machine learning approach for modelling the dependence of gas shapes on dark matter and baryonic properties.
Cosmology and Nongalactic Astrophysics
1 code implementation • 29 Jun 2020 • Arya Farahi, Daisuke Nagai, Yang Chen
We present a novel population-based Bayesian inference approach to model the average and population variance of spatial distribution of a set of observables from ensemble analysis of low signal-to-noise ratio measurements.
Cosmology and Nongalactic Astrophysics Astrophysics of Galaxies Instrumentation and Methods for Astrophysics
no code implementations • 7 Aug 2019 • Sheridan B. Green, Michelle Ntampaka, Daisuke Nagai, Lorenzo Lovisari, Klaus Dolag, Dominique Eckert, John A. ZuHone
This procedure is performed for two different mock observation series in an effort to bracket the potential enhancement in mass predictions that can be made possible by including dynamical state information.
Cosmology and Nongalactic Astrophysics
no code implementations • 26 Feb 2019 • Michelle Ntampaka, Camille Avestruz, Steven Boada, Joao Caldeira, Jessi Cisewski-Kehe, Rosanne Di Stefano, Cora Dvorkin, August E. Evrard, Arya Farahi, Doug Finkbeiner, Shy Genel, Alyssa Goodman, Andy Goulding, Shirley Ho, Arthur Kosowsky, Paul La Plante, Francois Lanusse, Michelle Lochner, Rachel Mandelbaum, Daisuke Nagai, Jeffrey A. Newman, Brian Nord, J. E. G. Peek, Austin Peel, Barnabas Poczos, Markus Michael Rau, Aneta Siemiginowska, Dougal J. Sutherland, Hy Trac, Benjamin Wandelt
In recent years, machine learning (ML) methods have remarkably improved how cosmologists can interpret data.
Instrumentation and Methods for Astrophysics Cosmology and Nongalactic Astrophysics