no code implementations • 11 Nov 2022 • Lianshang Cai, Linhao Zhang, Dehong Ma, Jun Fan, Daiting Shi, Yi Wu, Zhicong Cheng, Simiu Gu, Dawei Yin
In this paper, we focus on two key questions in knowledge distillation for ranking models: 1) how to ensemble knowledge from multi-teacher; 2) how to utilize the label information of data in the distillation process.
no code implementations • 18 Oct 2022 • Wenbiao Li, Pan Tang, Zhengfan Wu, Weixue Lu, Minghua Zhang, Zhenlei Tian, Daiting Shi, Yu Sun, Simiu Gu, Dawei Yin
Meanwhile, we introduce sentence-level semantic interaction to design a multi-embedding-based retrieval (MEBR) model, which can generate multiple embeddings to deal with different potential queries by using frequently clicked sentences in web pages.
no code implementations • 7 Jun 2021 • Yiding Liu, Guan Huang, Jiaxiang Liu, Weixue Lu, Suqi Cheng, Yukun Li, Daiting Shi, Shuaiqiang Wang, Zhicong Cheng, Dawei Yin
More importantly, we present a practical system workflow for deploying the model in web-scale retrieval.
no code implementations • 24 May 2021 • Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Daiting Shi, Zhifan Zhu, Weiyue Su, Shuaiqiang Wang, Zhicong Cheng, Dawei Yin
However, it is nontrivial to directly apply these PLM-based rankers to the large-scale web search system due to the following challenging issues:(1) the prohibitively expensive computations of massive neural PLMs, especially for long texts in the web-document, prohibit their deployments in an online ranking system that demands extremely low latency;(2) the discrepancy between existing ranking-agnostic pre-training objectives and the ad-hoc retrieval scenarios that demand comprehensive relevance modeling is another main barrier for improving the online ranking system;(3) a real-world search engine typically involves a committee of ranking components, and thus the compatibility of the individually fine-tuned ranking model is critical for a cooperative ranking system.