1 code implementation • 20 Dec 2021 • Filippo Vicentini, Damian Hofmann, Attila Szabó, Dian Wu, Christopher Roth, Clemens Giuliani, Gabriel Pescia, Jannes Nys, Vladimir Vargas-Calderon, Nikita Astrakhantsev, Giuseppe Carleo
We introduce version 3 of NetKet, the machine learning toolbox for many-body quantum physics.
1 code implementation • 29 Mar 2019 • Giuseppe Carleo, Kenny Choo, Damian Hofmann, James E. T. Smith, Tom Westerhout, Fabien Alet, Emily J. Davis, Stavros Efthymiou, Ivan Glasser, Sheng-Hsuan Lin, Marta Mauri, Guglielmo Mazzola, Christian B. Mendl, Evert van Nieuwenburg, Ossian O'Reilly, Hugo Théveniaut, Giacomo Torlai, Alexander Wietek
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques.
Quantum Physics Disordered Systems and Neural Networks Strongly Correlated Electrons Computational Physics Data Analysis, Statistics and Probability