no code implementations • 27 Jun 2023 • Giorgio Giannone, Lyle Regenwetter, Akash Srivastava, Dan Gutfreund, Faez Ahmed
This is particularly problematic when the generated data must satisfy constraints, for example, to meet product specifications in engineering design or to adhere to the laws of physics in a natural scene.
1 code implementation • ICCV 2023 • Guangyao Zhou, Nishad Gothoskar, Lirui Wang, Joshua B. Tenenbaum, Dan Gutfreund, Miguel Lázaro-Gredilla, Dileep George, Vikash K. Mansinghka
In this paper, we introduce probabilistic modeling to the inverse graphics framework to quantify uncertainty and achieve robustness in 6D pose estimation tasks.
no code implementations • 6 Feb 2023 • Lyle Regenwetter, Akash Srivastava, Dan Gutfreund, Faez Ahmed
This paper doubles as a review and a practical guide to evaluation metrics for deep generative models (DGMs) in engineering design.
1 code implementation • 30 Aug 2022 • Amin Heyrani Nobari, Akash Srivastava, Dan Gutfreund, Faez Ahmed
LINKS is made up of various components including 100 million mechanisms, the simulation data for each mechanism, normalized paths generated by each mechanism, a curated set of paths, the code used to generate the data and simulate mechanisms, and a live web demo for interactive design of linkage mechanisms.
no code implementations • 4 Aug 2022 • Tan Zhi-Xuan, Nishad Gothoskar, Falk Pollok, Dan Gutfreund, Joshua B. Tenenbaum, Vikash K. Mansinghka
To facilitate the development of new models to bridge the gap between machine and human social intelligence, the recently proposed Baby Intuitions Benchmark (arXiv:2102. 11938) provides a suite of tasks designed to evaluate commonsense reasoning about agents' goals and actions that even young infants exhibit.
no code implementations • CVPR 2022 • Chuang Gan, Yi Gu, Siyuan Zhou, Jeremy Schwartz, Seth Alter, James Traer, Dan Gutfreund, Joshua B. Tenenbaum, Josh Mcdermott, Antonio Torralba
The way an object looks and sounds provide complementary reflections of its physical properties.
no code implementations • NeurIPS 2021 • Kai Xu, Akash Srivastava, Dan Gutfreund, Felix Sosa, Tomer Ullman, Josh Tenenbaum, Charles Sutton
In this paper, we propose a Bayesian-symbolic framework (BSP) for physical reasoning and learning that is close to human-level sample-efficiency and accuracy.
1 code implementation • NeurIPS 2021 • Nishad Gothoskar, Marco Cusumano-Towner, Ben Zinberg, Matin Ghavamizadeh, Falk Pollok, Austin Garrett, Joshua B. Tenenbaum, Dan Gutfreund, Vikash K. Mansinghka
We present 3DP3, a framework for inverse graphics that uses inference in a structured generative model of objects, scenes, and images.
no code implementations • 25 Mar 2021 • Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter, Abhishek Bhandwaldar, Dan Gutfreund, Daniel L. K. Yamins, James J DiCarlo, Josh Mcdermott, Antonio Torralba, Joshua B. Tenenbaum
To complete the task, an embodied agent must plan a sequence of actions to change the state of a large number of objects in the face of realistic physical constraints.
no code implementations • 24 Feb 2021 • Tianmin Shu, Abhishek Bhandwaldar, Chuang Gan, Kevin A. Smith, Shari Liu, Dan Gutfreund, Elizabeth Spelke, Joshua B. Tenenbaum, Tomer D. Ullman
For machine agents to successfully interact with humans in real-world settings, they will need to develop an understanding of human mental life.
Ranked #1 on
Core Psychological Reasoning
on AGENT
no code implementations • 1 Jan 2021 • Kai Xu, Akash Srivastava, Dan Gutfreund, Felix Sosa, Tomer Ullman, Joshua B. Tenenbaum, Charles Sutton
As such, learning the laws is then reduced to symbolic regression and Bayesian inference methods are used to obtain the distribution of unobserved properties.
no code implementations • 7 Nov 2020 • Abhijit Mishra, Md Faisal Mahbub Chowdhury, Sagar Manohar, Dan Gutfreund, Karthik Sankaranarayanan
The model takes as input a set of un-ordered keywords, and part-of-speech (POS) based template instructions.
no code implementations • 25 Oct 2020 • Akash Srivastava, Yamini Bansal, Yukun Ding, Cole Hurwitz, Kai Xu, Bernhard Egger, Prasanna Sattigeri, Josh Tenenbaum, David D. Cox, Dan Gutfreund
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the (aggregate) posterior to encourage statistical independence of the latent factors.
1 code implementation • 9 Jul 2020 • Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott, Daniel L. K. Yamins
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation.
no code implementations • ICLR 2020 • Akash Srivastava, Yamini Bansal, Yukun Ding, Bernhard Egger, Prasanna Sattigeri, Josh Tenenbaum, David D. Cox, Dan Gutfreund
In this work, we tackle a slightly more intricate scenario where the observations are generated from a conditional distribution of some known control variate and some latent noise variate.
no code implementations • NeurIPS 2019 • Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, Boris Katz
Although we focus on object recognition here, data with controls can be gathered at scale using automated tools throughout machine learning to generate datasets that exercise models in new ways thus providing valuable feedback to researchers.
Ranked #50 on
Image Classification
on ObjectNet
(using extra training data)
no code implementations • 19 Nov 2019 • Akash Srivastava, Jessie Rosenberg, Dan Gutfreund, David D. Cox
Then an inference network (encoder)is trained to invert the decoder.
2 code implementations • 1 Nov 2019 • Mathew Monfort, Bowen Pan, Kandan Ramakrishnan, Alex Andonian, Barry A McNamara, Alex Lascelles, Quanfu Fan, Dan Gutfreund, Rogerio Feris, Aude Oliva
Videos capture events that typically contain multiple sequential, and simultaneous, actions even in the span of only a few seconds.
no code implementations • ICCV 2019 • Tete Xiao, Quanfu Fan, Dan Gutfreund, Mathew Monfort, Aude Oliva, Bolei Zhou
The model not only finds when an action is happening and which object is being manipulated, but also identifies which part of the object is being interacted with.
no code implementations • 28 May 2019 • Mathew Monfort, Kandan Ramakrishnan, Barry A McNamara, Alex Lascelles, Dan Gutfreund, Rogerio Feris, Aude Oliva
A number of recent methods to understand neural networks have focused on quantifying the role of individual features.
no code implementations • COLING 2014 • Noam Slonim, Ehud Aharoni, Carlos Alzate, Roy Bar-Haim, Yonatan Bilu, Lena Dankin, Iris Eiron, Daniel Hershcovich, Shay Hummel, Mitesh Khapra, Tamar Lavee, Ran Levy, Paul Matchen, Anatoly Polnarov, Vikas Raykar, Ruty Rinott, Amrita Saha, Naama Zwerdling, David Konopnicki, Dan Gutfreund