Search Results for author: Dan Hendrycks

Found 65 papers, 41 papers with code

Superintelligence Strategy: Expert Version

no code implementations7 Mar 2025 Dan Hendrycks, Eric Schmidt, Alexandr Wang

Rapid advances in AI are beginning to reshape national security.

Navigate

Beyond Release: Access Considerations for Generative AI Systems

no code implementations23 Feb 2025 Irene Solaiman, Rishi Bommasani, Dan Hendrycks, Ariel Herbert-Voss, Yacine Jernite, Aviya Skowron, Andrew Trask

Generative AI release decisions determine whether system components are made available, but release does not address many other elements that change how users and stakeholders are able to engage with a system.

Utility Engineering: Analyzing and Controlling Emergent Value Systems in AIs

no code implementations12 Feb 2025 Mantas Mazeika, Xuwang Yin, Rishub Tamirisa, JaeHyuk Lim, Bruce W. Lee, Richard Ren, Long Phan, Norman Mu, Adam Khoja, Oliver Zhang, Dan Hendrycks

To study these emergent value systems, we propose utility engineering as a research agenda, comprising both the analysis and control of AI utilities.

Humanity's Last Exam

no code implementations24 Jan 2025 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Daron Anderson, Tung Nguyen, Mobeen Mahmood, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou, Zihan Wang, Jessica P. Wang, Pawan Kumar, Oleksandr Pokutnyi, Robert Gerbicz, Serguei Popov, John-Clark Levin, Mstyslav Kazakov, Johannes Schmitt, Geoff Galgon, Alvaro Sanchez, Yongki Lee, Will Yeadon, Scott Sauers, Marc Roth, Chidozie Agu, Søren Riis, Fabian Giska, Saiteja Utpala, Zachary Giboney, Gashaw M. Goshu, Joan of Arc Xavier, Sarah-Jane Crowson, Mohinder Maheshbhai Naiya, Noah Burns, Lennart Finke, Zerui Cheng, Hyunwoo Park, Francesco Fournier-Facio, John Wydallis, Mark Nandor, Ankit Singh, Tim Gehrunger, Jiaqi Cai, Ben McCarty, Darling Duclosel, Jungbae Nam, Jennifer Zampese, Ryan G. Hoerr, Aras Bacho, Gautier Abou Loume, Abdallah Galal, Hangrui Cao, Alexis C Garretson, Damien Sileo, Qiuyu Ren, Doru Cojoc, Pavel Arkhipov, Usman Qazi, Lianghui Li, Sumeet Motwani, Christian Schroeder de Witt, Edwin Taylor, Johannes Veith, Eric Singer, Taylor D. Hartman, Paolo Rissone, Jaehyeok Jin, Jack Wei Lun Shi, Chris G. Willcocks, Aleksandar Mikov, Ameya Prabhu, Longke Tang, Xavier Alapont, Justine Leon Uro, Kevin Zhou, Emily de Oliveira Santos, Andrey Pupasov Maksimov, Edward Vendrow, Kengo Zenitani, Julien Guillod, Yuqi Li, Joshua Vendrow, Vladyslav Kuchkin, Ng Ze-An, Pierre Marion, Denis Efremov, Jayson Lynch, Kaiqu Liang, Andrew Gritsevskiy, Dakotah Martinez, Ben Pageler, Nick Crispino, Dimitri Zvonkine, Natanael Wildner Fraga, Saeed Soori, Ori Press, Henry Tang, Julian Salazar, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric Dieuleveut, T. Ryan Rogers, Wenjin Zhang, Bikun Li, Jinzhou Yang, Arun Rao, Gabriel Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Subrata Mishra, Ariel Ghislain Kemogne Kamdoum, Tobias Kreiman, Tad Hogg, Alvin Jin, Carlo Bosio, Gongbo Sun, Brian P Coppola, Tim Tarver, Haline Heidinger, Rafael Sayous, Stefan Ivanov, Joseph M Cavanagh, Jiawei Shen, Joseph Marvin Imperial, Philippe Schwaller, Shaipranesh Senthilkuma, Andres M Bran, Ali Dehghan, Andres Algaba, Brecht Verbeken, David Noever, Ragavendran P V, Lisa Schut, Ilia Sucholutsky, Evgenii Zheltonozhskii, Derek Lim, Richard Stanley, Shankar Sivarajan, Tong Yang, John Maar, Julian Wykowski, Martí Oller, Jennifer Sandlin, Anmol Sahu, Yuzheng Hu, Sara Fish, Nasser Heydari, Archimedes Apronti, Kaivalya Rawal, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner, James Koppel, Jeremy Nguyen, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene, Alan Goldfarb, Sergey Ivanov, Rafał Poświata, Chenguang Wang, Daofeng Li, Donato Crisostomi, Andrea Achilleos, Benjamin Myklebust, Archan Sen, David Perrella, Nurdin Kaparov, Mark H Inlow, Allen Zang, Elliott Thornley, Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster, Daniel Munro, Linh Ho, Dan Bar Hava, Aleksey Kuchkin, Robert Lauff, David Holmes, Frank Sommerhage, Keith Schneider, Zakayo Kazibwe, Nate Stambaugh, Mukhwinder Singh, Ilias Magoulas, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Veit Elser, Kanu Priya Agarwal, Victor Efren Guadarrama Vilchis, Immo Klose, Christoph Demian, Ujjwala Anantheswaran, Adam Zweiger, Guglielmo Albani, Jeffery Li, Nicolas Daans, Maksim Radionov, Václav Rozhoň, Ziqiao Ma, Christian Stump, Mohammed Berkani, Jacob Platnick, Volodymyr Nevirkovets, Luke Basler, Marco Piccardo, Ferenc Jeanplong, Niv Cohen, Josef Tkadlec, Paul Rosu, Piotr Padlewski, Stanislaw Barzowski, Kyle Montgomery, Aline Menezes, Arkil Patel, Zixuan Wang, Jamie Tucker-Foltz, Jack Stade, Tom Goertzen, Fereshteh Kazemi, Jeremiah Milbauer, John Arnold Ambay, Abhishek Shukla, Yan Carlos Leyva Labrador, Alan Givré, Hew Wolff, Vivien Rossbach, Muhammad Fayez Aziz, Younesse Kaddar, Yanxu Chen, Robin Zhang, Jiayi Pan, Antonio Terpin, Niklas Muennighoff, Hailey Schoelkopf, Eric Zheng, Avishy Carmi, Adam Jones, Jainam Shah, Ethan D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Andrew Ho, Shaul Barkan, Jiaqi Wang, Martin Stehberger, Egor Kretov, Kaustubh Sridhar, Zienab EL-Wasif, Anji Zhang, Daniel Pyda, Joanna Tam, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis, Michael Krause, Andrew Redenti, Daniel Bugas, David Aldous, Jesyin Lai, Shannon Coleman, Mohsen Bahaloo, Jiangnan Xu, Sangwon Lee, Sandy Zhao, Ning Tang, Michael K. Cohen, Micah Carroll, Orr Paradise, Jan Hendrik Kirchner, Stefan Steinerberger, Maksym Ovchynnikov, Jason O. Matos, Adithya Shenoy, Benedito Alves de Oliveira Junior, Michael Wang, Yuzhou Nie, Paolo Giordano, Philipp Petersen, Anna Sztyber-Betley, Priti Shukla, Jonathan Crozier, Antonella Pinto, Shreyas Verma, Prashant Joshi, Zheng-Xin Yong, Allison Tee, Jérémy Andréoletti, Orion Weller, Raghav Singhal, Gang Zhang, Alexander Ivanov, Seri Khoury, Hamid Mostaghimi, Kunvar Thaman, Qijia Chen, Tran Quoc Khánh, Jacob Loader, Stefano Cavalleri, Hannah Szlyk, Zachary Brown, Jonathan Roberts, William Alley, Kunyang Sun, Ryan Stendall, Max Lamparth, Anka Reuel, Ting Wang, Hanmeng Xu, Sreenivas Goud Raparthi, Pablo Hernández-Cámara, Freddie Martin, Dmitry Malishev, Thomas Preu, Tomek Korbak, Marcus Abramovitch, Dominic Williamson, Ziye Chen, Biró Bálint, M Saiful Bari, Peyman Kassani, ZiHao Wang, Behzad Ansarinejad, Laxman Prasad Goswami, Yewen Sun, Hossam Elgnainy, Daniel Tordera, George Balabanian, Earth Anderson, Lynna Kvistad, Alejandro José Moyano, Rajat Maheshwari, Ahmad Sakor, Murat Eron, Isaac C. McAlister, Javier Gimenez, Innocent Enyekwe, Andrew Favre D. O., Shailesh Shah, Xiaoxiang Zhou, Firuz Kamalov, Ronald Clark, Sherwin Abdoli, Tim Santens, Khalida Meer, Harrison K Wang, Kalyan Ramakrishnan, Evan Chen, Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le, Noam Kolt, Niels Mündler, Avi Semler, Emma Rodman, Jacob Drori, Carl J Fossum, Milind Jagota, Ronak Pradeep, Honglu Fan, Tej Shah, Jonathan Eicher, Michael Chen, Kushal Thaman, William Merrill, Carter Harris, Jason Gross, Ilya Gusev, Asankhaya Sharma, Shashank Agnihotri, Pavel Zhelnov, Siranut Usawasutsakorn, Mohammadreza Mofayezi, Sergei Bogdanov, Alexander Piperski, Marc Carauleanu, David K. Zhang, Dylan Ler, Roman Leventov, Ignat Soroko, Thorben Jansen, Pascal Lauer, Joshua Duersch, Vage Taamazyan, Wiktor Morak, Wenjie Ma, William Held, Tran Đuc Huy, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed, Julian Noah Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler, Hossein Shahrtash, Edson Oliveira, Joseph W. Jackson, Daniel Espinosa Gonzalez, Andy Zou, Muthu Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen, Emilien Duc, Bita Golshani, David Stap, Mikalai Uzhou, Alina Borisovna Zhidkovskaya, Lukas Lewark, Mátyás Vincze, Dustin Wehr, Colin Tang, Zaki Hossain, Shaun Phillips, Jiang Muzhen, Fredrik Ekström, Angela Hammon, Oam Patel, Nicolas Remy, Faraz Farhidi, George Medley, Forough Mohammadzadeh, Madellene Peñaflor, Haile Kassahun, Alena Friedrich, Claire Sparrow, Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi, Eric Hallman, Mike Battaglia, Mohammad Maghsoudimehrabani, Hieu Hoang, Alon Amit, Dave Hulbert, Roberto Pereira, Simon Weber, Stephen Mensah, Nathan Andre, Anton Peristyy, Chris Harjadi, Himanshu Gupta, Stephen Malina, Samuel Albanie, Will Cai, Mustafa Mehkary, Frank Reidegeld, Anna-Katharina Dick, Cary Friday, Jasdeep Sidhu, Wanyoung Kim, Mariana Costa, Hubeyb Gurdogan, Brian Weber, Harsh Kumar, Tong Jiang, Arunim Agarwal, Chiara Ceconello, Warren S. Vaz, Chao Zhuang, Haon Park, Andrew R. Tawfeek, Daattavya Aggarwal, Michael Kirchhof, Linjie Dai, Evan Kim, Johan Ferret, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin Zhang, Antonio Franca, Diana T. Pham, Kang Yong Loh, Joshua Robinson, Shreen Gul, Gunjan Chhablani, Zhehang Du, Adrian Cosma, Colin White, Robin Riblet, Prajvi Saxena, Jacob Votava, Vladimir Vinnikov, Ethan Delaney, Shiv Halasyamani, Syed M. Shahid, Jean-Christophe Mourrat, Lavr Vetoshkin, Renas Bacho, Vincent Ginis, Aleksandr Maksapetyan, Florencia de la Rosa, Xiuyu Li, Guillaume Malod, Leon Lang, Julien Laurendeau, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor Souza, Yuchen Anna Zhou, Yiğit Yalın, Gbenga Daniel Obikoya, Luca Arnaboldi, Rai, Filippo Bigi, Kaniuar Bacho, Pierre Clavier, Gabriel Recchia, Mara Popescu, Nikita Shulga, Ngefor Mildred Tanwie, Thomas C. H. Lux, Ben Rank, Colin Ni, Alesia Yakimchyk, Huanxu, Liu, Olle Häggström, Emil Verkama, Himanshu Narayan, Hans Gundlach, Leonor Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Yiyang Fan, Gabriel Poesia Reis e Silva, Linwei Xin, Yosi Kratish, Jakub Łucki, Wen-Ding Li, Justin Xu, Kevin Joseph Scaria, Freddie Vargus, Farzad Habibi, Long, Lian, Emanuele Rodolà, Jules Robins, Vincent Cheng, Declan Grabb, Ida Bosio, Tony Fruhauff, Ido Akov, Eve J. Y. Lo, Hao Qi, Xi Jiang, Ben Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner, Mao Mao, Yibo Jiang, Xinyu Zhang, David Avagian, Eshawn Jessica Scipio, Muhammad Rehan Siddiqi, Alon Ragoler, Justin Tan, Deepakkumar Patil, Rebeka Plecnik, Aaron Kirtland, Roselynn Grace Montecillo, Stephane Durand, Omer Faruk Bodur, Zahra Adoul, Mohamed Zekry, Guillaume Douville, Ali Karakoc, Tania C. B. Santos, Samir Shamseldeen, Loukmane Karim, Anna Liakhovitskaia, Nate Resman, Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Sarah Hoback, Rodrigo De Oliveira Pena, Glen Sherman, Hodjat Mariji, Rasoul Pouriamanesh, Wentao Wu, Gözdenur Demir, Sandra Mendoza, Ismail Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Hsiaoyun Milliron, Mohammad Safdari, Liangti Dai, Siriphan Arthornthurasuk, Alexey Pronin, Jing Fan, Angel Ramirez-Trinidad, Ashley Cartwright, Daphiny Pottmaier, Omid Taheri, David Outevsky, Stanley Stepanic, Samuel Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Abdelkader Dendane, Sam Ali, Ricardo Lorena, Krishnamurthy Iyer, Sk Md Salauddin, Murat Islam, Juan Gonzalez, Josh Ducey, Russell Campbell, Maja Somrak, Vasilios Mavroudis, Eric Vergo, Juehang Qin, Benjámin Borbás, Eric Chu, Jack Lindsey, Anil Radhakrishnan, Antoine Jallon, I. M. J. McInnis, Alex Hoover, Sören Möller, Song Bian, John Lai, Tejal Patwardhan, Summer Yue, Alexandr Wang, Dan Hendrycks

However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities.

Humanity's Last Exam Language Modeling +4

Introduction to AI Safety, Ethics, and Society

no code implementations1 Nov 2024 Dan Hendrycks

Artificial Intelligence is rapidly embedding itself within militaries, economies, and societies, reshaping their very foundations.

Ethics Philosophy

AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents

1 code implementation11 Oct 2024 Maksym Andriushchenko, Alexandra Souly, Mateusz Dziemian, Derek Duenas, Maxwell Lin, Justin Wang, Dan Hendrycks, Andy Zou, Zico Kolter, Matt Fredrikson, Eric Winsor, Jerome Wynne, Yarin Gal, Xander Davies

The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots.

LLM-PBE: Assessing Data Privacy in Large Language Models

1 code implementation23 Aug 2024 Qinbin Li, Junyuan Hong, Chulin Xie, Jeffrey Tan, Rachel Xin, Junyi Hou, Xavier Yin, Zhun Wang, Dan Hendrycks, Zhangyang Wang, Bo Li, Bingsheng He, Dawn Song

Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.

Tamper-Resistant Safeguards for Open-Weight LLMs

2 code implementations1 Aug 2024 Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell Lin, Justin Wang, Rowan Wang, Ron Arel, Andy Zou, Dawn Song, Bo Li, Dan Hendrycks, Mantas Mazeika

Rapid advances in the capabilities of large language models (LLMs) have raised widespread concerns regarding their potential for malicious use.

Red Teaming TAR

Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress?

1 code implementation31 Jul 2024 Richard Ren, Steven Basart, Adam Khoja, Alice Gatti, Long Phan, Xuwang Yin, Mantas Mazeika, Alexander Pan, Gabriel Mukobi, Ryan H. Kim, Stephen Fitz, Dan Hendrycks

As artificial intelligence systems grow more powerful, there has been increasing interest in "AI safety" research to address emerging and future risks.

General Knowledge

Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression

no code implementations18 Mar 2024 Junyuan Hong, Jinhao Duan, Chenhui Zhang, Zhangheng Li, Chulin Xie, Kelsey Lieberman, James Diffenderfer, Brian Bartoldson, Ajay Jaiswal, Kaidi Xu, Bhavya Kailkhura, Dan Hendrycks, Dawn Song, Zhangyang Wang, Bo Li

While state-of-the-art (SoTA) compression methods boast impressive advancements in preserving benign task performance, the potential risks of compression in terms of safety and trustworthiness have been largely neglected.

Ethics Fairness +1

HarmBench: A Standardized Evaluation Framework for Automated Red Teaming and Robust Refusal

2 code implementations6 Feb 2024 Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel Li, Steven Basart, Bo Li, David Forsyth, Dan Hendrycks

Automated red teaming holds substantial promise for uncovering and mitigating the risks associated with the malicious use of large language models (LLMs), yet the field lacks a standardized evaluation framework to rigorously assess new methods.

Red Teaming

Can LLMs Follow Simple Rules?

1 code implementation6 Nov 2023 Norman Mu, Sarah Chen, Zifan Wang, Sizhe Chen, David Karamardian, Lulwa Aljeraisy, Basel Alomair, Dan Hendrycks, David Wagner

As Large Language Models (LLMs) are deployed with increasing real-world responsibilities, it is important to be able to specify and constrain the behavior of these systems in a reliable manner.

Representation Engineering: A Top-Down Approach to AI Transparency

5 code implementations2 Oct 2023 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson, J. Zico Kolter, Dan Hendrycks

In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience.

Question Answering

AI Deception: A Survey of Examples, Risks, and Potential Solutions

no code implementations28 Aug 2023 Peter S. Park, Simon Goldstein, Aidan O'Gara, Michael Chen, Dan Hendrycks

This paper argues that a range of current AI systems have learned how to deceive humans.

Survey

An Overview of Catastrophic AI Risks

no code implementations21 Jun 2023 Dan Hendrycks, Mantas Mazeika, Thomas Woodside

Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose catastrophic risks.

DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models

no code implementations NeurIPS 2023 Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, Bo Li

Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications such as healthcare and finance -- where mistakes can be costly.

Adversarial Robustness Ethics +1

Natural Selection Favors AIs over Humans

no code implementations28 Mar 2023 Dan Hendrycks

Evolution endowed humans with high intelligence, which allowed us to become one of the most successful species on the planet.

MAUD: An Expert-Annotated Legal NLP Dataset for Merger Agreement Understanding

2 code implementations2 Jan 2023 Steven H. Wang, Antoine Scardigli, Leonard Tang, Wei Chen, Dimitry Levkin, Anya Chen, Spencer Ball, Thomas Woodside, Oliver Zhang, Dan Hendrycks

Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets.

Reading Comprehension

How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios

1 code implementation18 Oct 2022 Mantas Mazeika, Eric Tang, Andy Zou, Steven Basart, Jun Shern Chan, Dawn Song, David Forsyth, Jacob Steinhardt, Dan Hendrycks

In experiments, we show how video models that are primarily trained to recognize actions and find contours of objects can be repurposed to understand human preferences and the emotional content of videos.

Video Understanding

OpenOOD: Benchmarking Generalized Out-of-Distribution Detection

4 code implementations13 Oct 2022 Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan Hendrycks, Yixuan Li, Ziwei Liu

Out-of-distribution (OOD) detection is vital to safety-critical machine learning applications and has thus been extensively studied, with a plethora of methods developed in the literature.

Anomaly Detection Benchmarking +3

Forecasting Future World Events with Neural Networks

1 code implementation30 Jun 2022 Andy Zou, Tristan Xiao, Ryan Jia, Joe Kwon, Mantas Mazeika, Richard Li, Dawn Song, Jacob Steinhardt, Owain Evans, Dan Hendrycks

We test language models on our forecasting task and find that performance is far below a human expert baseline.

Decision Making Diversity +2

Actionable Guidance for High-Consequence AI Risk Management: Towards Standards Addressing AI Catastrophic Risks

no code implementations17 Jun 2022 Anthony M. Barrett, Dan Hendrycks, Jessica Newman, Brandie Nonnecke

In this document, we provide detailed actionable-guidance recommendations focused on identifying and managing risks of events with very high or catastrophic consequences, intended as a risk management practices resource for NIST for AI RMF version 1. 0 (released in January 2023), or for AI RMF users, or for other AI risk management guidance and standards as appropriate.

Management

X-Risk Analysis for AI Research

no code implementations13 Jun 2022 Dan Hendrycks, Mantas Mazeika

Artificial intelligence (AI) has the potential to greatly improve society, but as with any powerful technology, it comes with heightened risks and responsibilities.

Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

5 code implementations9 Jun 2022 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, ZiRui Wang, Ziyi Wu

BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models.

Common Sense Reasoning Math +1

PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures

2 code implementations CVPR 2022 Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, Jacob Steinhardt

In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy.

Adversarial Robustness Anomaly Detection +1

Certified Adversarial Defenses Meet Out-of-Distribution Corruptions: Benchmarking Robustness and Simple Baselines

no code implementations1 Dec 2021 Jiachen Sun, Akshay Mehra, Bhavya Kailkhura, Pin-Yu Chen, Dan Hendrycks, Jihun Hamm, Z. Morley Mao

To alleviate this issue, we propose a novel data augmentation scheme, FourierMix, that produces augmentations to improve the spectral coverage of the training data.

Adversarial Robustness Benchmarking +1

A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges

1 code implementation26 Oct 2021 Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Mohammad Hossein Rohban, Mohammad Sabokrou

To date, several research domains tackle the problem of detecting unfamiliar samples, including anomaly detection, novelty detection, one-class learning, open set recognition, and out-of-distribution detection.

Anomaly Detection Novelty Detection +3

What Would Jiminy Cricket Do? Towards Agents That Behave Morally

1 code implementation25 Oct 2021 Dan Hendrycks, Mantas Mazeika, Andy Zou, Sahil Patel, Christine Zhu, Jesus Navarro, Dawn Song, Bo Li, Jacob Steinhardt

When making everyday decisions, people are guided by their conscience, an internal sense of right and wrong.

Improving and Assessing Anomaly Detectors for Large-Scale Settings

no code implementations29 Sep 2021 Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Mohammadreza Mostajabi, Jacob Steinhardt

We conduct extensive experiments in these more realistic settings for out-of-distribution detection and find that a surprisingly simple detector based on the maximum logit outperforms prior methods in all the large-scale multi-class, multi-label, and segmentation tasks, establishing a simple new baseline for future work.

Anomaly Segmentation Out-of-Distribution Detection +2

Unsolved Problems in ML Safety

no code implementations28 Sep 2021 Dan Hendrycks, Nicholas Carlini, John Schulman, Jacob Steinhardt

Machine learning (ML) systems are rapidly increasing in size, are acquiring new capabilities, and are increasingly deployed in high-stakes settings.

Measuring Coding Challenge Competence With APPS

3 code implementations20 May 2021 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, Jacob Steinhardt

Recent models such as GPT-Neo can pass approximately 20% of the test cases of introductory problems, so we find that machine learning models are now beginning to learn how to code.

BIG-bench Machine Learning Code Generation

CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review

2 code implementations10 Mar 2021 Dan Hendrycks, Collin Burns, Anya Chen, Spencer Ball

We address this bottleneck within the legal domain by introducing the Contract Understanding Atticus Dataset (CUAD), a new dataset for legal contract review.

Measuring Mathematical Problem Solving With the MATH Dataset

4 code implementations5 Mar 2021 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, Jacob Steinhardt

To facilitate future research and increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics.

Math Mathematical Problem-Solving +2

A Rigorous Evaluation of Real-World Distribution Shifts

no code implementations1 Jan 2021 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, Justin Gilmer

Motivated by this, we introduce a new data augmentation method which advances the state-of-the-art and outperforms models pretrained with 1000x more labeled data.

Data Augmentation

How Multipurpose Are Language Models?

no code implementations ICLR 2021 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt

By comprehensively evaluating the breadth and depth of a model's academic and professional understanding, our test can be used to analyze models across many tasks and to identify important shortcomings.

Elementary Mathematics World Knowledge

Measuring Massive Multitask Language Understanding

17 code implementations7 Sep 2020 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt

By comprehensively evaluating the breadth and depth of a model's academic and professional understanding, our test can be used to analyze models across many tasks and to identify important shortcomings.

Elementary Mathematics Multi-task Language Understanding +1

Pretrained Transformers Improve Out-of-Distribution Robustness

1 code implementation ACL 2020 Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, Dawn Song

Although pretrained Transformers such as BERT achieve high accuracy on in-distribution examples, do they generalize to new distributions?

Scaling Out-of-Distribution Detection for Real-World Settings

4 code implementations25 Nov 2019 Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mohammadreza Mostajabi, Jacob Steinhardt, Dawn Song

We conduct extensive experiments in these more realistic settings for out-of-distribution detection and find that a surprisingly simple detector based on the maximum logit outperforms prior methods in all the large-scale multi-class, multi-label, and segmentation tasks, establishing a simple new baseline for future work.

Anomaly Segmentation Out-of-Distribution Detection +3

Testing Robustness Against Unforeseen Adversaries

3 code implementations21 Aug 2019 Max Kaufmann, Daniel Kang, Yi Sun, Steven Basart, Xuwang Yin, Mantas Mazeika, Akul Arora, Adam Dziedzic, Franziska Boenisch, Tom Brown, Jacob Steinhardt, Dan Hendrycks

To narrow in on this discrepancy between research and reality we introduce ImageNet-UA, a framework for evaluating model robustness against a range of unforeseen adversaries, including eighteen new non-L_p attacks.

Adversarial Defense Adversarial Robustness

Natural Adversarial Examples

3 code implementations CVPR 2021 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, Dawn Song

We also curate an adversarial out-of-distribution detection dataset called ImageNet-O, which is the first out-of-distribution detection dataset created for ImageNet models.

Adversarial Attack Data Augmentation +2

Transfer of Adversarial Robustness Between Perturbation Types

no code implementations3 May 2019 Daniel Kang, Yi Sun, Tom Brown, Dan Hendrycks, Jacob Steinhardt

We study the transfer of adversarial robustness of deep neural networks between different perturbation types.

Adversarial Robustness

Benchmarking Neural Network Robustness to Common Corruptions and Perturbations

15 code implementations ICLR 2019 Dan Hendrycks, Thomas Dietterich

Then we propose a new dataset called ImageNet-P which enables researchers to benchmark a classifier's robustness to common perturbations.

Adversarial Defense Benchmarking +1

Using Pre-Training Can Improve Model Robustness and Uncertainty

1 code implementation28 Jan 2019 Dan Hendrycks, Kimin Lee, Mantas Mazeika

He et al. (2018) have called into question the utility of pre-training by showing that training from scratch can often yield similar performance to pre-training.

Adversarial Robustness General Classification +1

Deep Anomaly Detection with Outlier Exposure

9 code implementations ICLR 2019 Dan Hendrycks, Mantas Mazeika, Thomas Dietterich

We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Ranked #3 on Out-of-Distribution Detection on CIFAR-100 (using extra training data)

Anomaly Detection Out-of-Distribution Detection +1

Open Category Detection with PAC Guarantees

1 code implementation ICML 2018 Si Liu, Risheek Garrepalli, Thomas G. Dietterich, Alan Fern, Dan Hendrycks

Further, while there are algorithms for open category detection, there are few empirical results that directly report alien detection rates.

Benchmarking Neural Network Robustness to Common Corruptions and Surface Variations

2 code implementations ICLR 2019 Dan Hendrycks, Thomas G. Dietterich

Then we propose a new dataset called Icons-50 which opens research on a new kind of robustness, surface variation robustness.

Adversarial Defense Benchmarking

Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise

1 code implementation NeurIPS 2018 Dan Hendrycks, Mantas Mazeika, Duncan Wilson, Kevin Gimpel

We utilize trusted data by proposing a loss correction technique that utilizes trusted examples in a data-efficient manner to mitigate the effects of label noise on deep neural network classifiers.

Data Poisoning

Early Methods for Detecting Adversarial Images

1 code implementation1 Aug 2016 Dan Hendrycks, Kevin Gimpel

Many machine learning classifiers are vulnerable to adversarial perturbations.

BIG-bench Machine Learning

Adjusting for Dropout Variance in Batch Normalization and Weight Initialization

1 code implementation8 Jul 2016 Dan Hendrycks, Kevin Gimpel

We show how to adjust for the variance introduced by dropout with corrections to weight initialization and Batch Normalization, yielding higher accuracy.

Data Augmentation

Gaussian Error Linear Units (GELUs)

8 code implementations27 Jun 2016 Dan Hendrycks, Kevin Gimpel

We propose the Gaussian Error Linear Unit (GELU), a high-performing neural network activation function.

Cannot find the paper you are looking for? You can Submit a new open access paper.