no code implementations • 26 Jun 2025 • Aristeidis Tsaris, Isaac Lyngaas, John Lagregren, Mohamed Wahib, Larry York, Prasanna Balaprakash, Dan Lu, Feiyi Wang, Xiao Wang
Vision-based scientific foundation models hold significant promise for advancing scientific discovery and innovation.
no code implementations • 7 May 2025 • Xiao Wang, Jong-Youl Choi, Takuya Kurihaya, Isaac Lyngaas, Hong-Jun Yoon, Ming Fan, Nasik Muhammad Nafi, Aristeidis Tsaris, Ashwin M. Aji, Maliha Hossain, Mohamed Wahib, Dali Wang, Peter Thornton, Prasanna Balaprakash, Moetasim Ashfaq, Dan Lu
It supports downscaling to 0. 9 km global resolution and processes sequences up to 4. 2 billion tokens.
no code implementations • 20 Apr 2025 • Hoang Tran, Zezhong Zhang, Feng Bao, Dan Lu, Guannan Zhang
However, these methods struggle to produce samples with the correct proportions for each mode in multimodal distributions, especially for distributions with well separated modes.
1 code implementation • 9 Dec 2024 • Ming Fan, Zezhong Zhang, Dan Lu, Guannan Zhang
It empowers researchers and practitioners to quickly estimate parameter distributions and generate model predictions for new observations, facilitating efficient decision-making and advancing the state of uncertainty quantification in computational modeling.
no code implementations • 24 Oct 2024 • Paul A. Ullrich, Elizabeth A. Barnes, William D. Collins, Katherine Dagon, Shiheng Duan, Joshua Elms, Jiwoo Lee, L. Ruby Leung, Dan Lu, Maria J. Molina, Travis A. O'Brien, Finn O. Rebassoo
Given the importance of deepening our understanding and improving predictions of the Earth system on all time scales, efforts are now underway to develop forecasting models into Earth-system models (ESMs), capable of representing all components of the coupled Earth system (or their aggregated behavior) and their response to external changes.
no code implementations • 16 Oct 2024 • Kshitij Tayal, Arvind Renganathan, Xiaowei Jia, Vipin Kumar, Dan Lu
Accurate long-term predictions are the foundations for many machine learning applications and decision-making processes.
no code implementations • 16 Jul 2024 • Junqi Yin, Siming Liang, Siyan Liu, Feng Bao, Hristo G. Chipilski, Dan Lu, Guannan Zhang
While these models show considerable potential, they are not ready yet for operational use in weather forecasting or climate prediction.
no code implementations • 23 Apr 2024 • Xiao Wang, Siyan Liu, Aristeidis Tsaris, Jong-Youl Choi, Ashwin Aji, Ming Fan, Wei zhang, Junqi Yin, Moetasim Ashfaq, Dan Lu, Prasanna Balaprakash
As the largest model of its kind, ORBIT surpasses the current climate AI foundation model size by a thousandfold.
1 code implementation • 31 Mar 2024 • Minglei Yang, Pengjun Wang, Ming Fan, Dan Lu, Yanzhao Cao, Guannan Zhang
We introduce a conditional pseudo-reversible normalizing flow for constructing surrogate models of a physical model polluted by additive noise to efficiently quantify forward and inverse uncertainty propagation.
no code implementations • 6 Oct 2023 • Shuaiwen Leon Song, Bonnie Kruft, Minjia Zhang, Conglong Li, Shiyang Chen, Chengming Zhang, Masahiro Tanaka, Xiaoxia Wu, Jeff Rasley, Ammar Ahmad Awan, Connor Holmes, Martin Cai, Adam Ghanem, Zhongzhu Zhou, Yuxiong He, Pete Luferenko, Divya Kumar, Jonathan Weyn, Ruixiong Zhang, Sylwester Klocek, Volodymyr Vragov, Mohammed AlQuraishi, Gustaf Ahdritz, Christina Floristean, Cristina Negri, Rao Kotamarthi, Venkatram Vishwanath, Arvind Ramanathan, Sam Foreman, Kyle Hippe, Troy Arcomano, Romit Maulik, Maxim Zvyagin, Alexander Brace, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Zhen Xie, Diangen Lin, Maulik Shukla, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Prasanna Balaprakash, Gina Tourassi, John Gounley, Heidi Hanson, Thomas E Potok, Massimiliano Lupo Pasini, Kate Evans, Dan Lu, Dalton Lunga, Junqi Yin, Sajal Dash, Feiyi Wang, Mallikarjun Shankar, Isaac Lyngaas, Xiao Wang, Guojing Cong, Pei Zhang, Ming Fan, Siyan Liu, Adolfy Hoisie, Shinjae Yoo, Yihui Ren, William Tang, Kyle Felker, Alexey Svyatkovskiy, Hang Liu, Ashwin Aji, Angela Dalton, Michael Schulte, Karl Schulz, Yuntian Deng, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Anima Anandkumar, Rick Stevens
In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences.
no code implementations • 5 Jul 2023 • Steven Goldenberg, Malachi Schram, Kishansingh Rajput, Thomas Britton, Chris Pappas, Dan Lu, Jared Walden, Majdi I. Radaideh, Sarah Cousineau, Sudarshan Harave
Providing accurate uncertainty estimations is essential for producing reliable machine learning models, especially in safety-critical applications such as accelerator systems.
no code implementations • 20 Apr 2023 • Yasir Alanazi, Malachi Schram, Kishansingh Rajput, Steven Goldenberg, Lasitha Vidyaratne, Chris Pappas, Majdi I. Radaideh, Dan Lu, Pradeep Ramuhalli, Sarah Cousineau
We present a multi-module framework based on Conditional Variational Autoencoder (CVAE) to detect anomalies in the power signals coming from multiple High Voltage Converter Modulators (HVCMs).
1 code implementation • ICLR 2022 • Siyan Liu, Pei Zhang, Dan Lu, Guannan Zhang
First, existing PI methods require retraining of neural networks (NNs) for every given confidence level and suffer from the crossing issue in calculating multiple PIs.
1 code implementation • 7 Feb 2020 • Jiaxin Zhang, Hoang Tran, Dan Lu, Guannan Zhang
Standard ES methods with $d$-dimensional Gaussian smoothing suffer from the curse of dimensionality due to the high variance of Monte Carlo (MC) based gradient estimators.
no code implementations • 16 Jan 2019 • Dan Lu, Daniel Ricciuto
Improving predictive understanding of Earth system variability and change requires data-model integration.