1 code implementation • 13 Aug 2021 • Chen Wang, Claudia Pérez-D'Arpino, Danfei Xu, Li Fei-Fei, C. Karen Liu, Silvio Savarese
Our method co-optimizes a human policy and a robot policy in an interactive learning process: the human policy learns to generate diverse and plausible collaborative behaviors from demonstrations while the robot policy learns to assist by estimating the unobserved latent strategy of its human collaborator.
1 code implementation • 6 Aug 2021 • Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei, Silvio Savarese, Yuke Zhu, Roberto Martín-Martín
Based on the study, we derive a series of lessons including the sensitivity to different algorithmic design choices, the dependence on the quality of the demonstrations, and the variability based on the stopping criteria due to the different objectives in training and evaluation.
no code implementations • 28 Feb 2021 • Chen Wang, Rui Wang, Ajay Mandlekar, Li Fei-Fei, Silvio Savarese, Danfei Xu
Key to such capability is hand-eye coordination, a cognitive ability that enables humans to adaptively direct their movements at task-relevant objects and be invariant to the objects' absolute spatial location.
no code implementations • 12 Dec 2020 • Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Yuke Zhu, Li Fei-Fei, Silvio Savarese
We develop a simple and effective algorithm to train the policy iteratively on new data collected by the system that encourages the policy to learn how to traverse bottlenecks through the interventions.
no code implementations • 13 Mar 2020 • Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Silvio Savarese, Li Fei-Fei
In the second stage of GTI, we collect a small set of rollouts from the unconditioned stochastic policy of the first stage, and train a goal-directed agent to generalize to novel start and goal configurations.
no code implementations • 1 Nov 2019 • Danfei Xu, Misha Denil
Learning reward functions from data is a promising path towards achieving scalable Reinforcement Learning (RL) for robotics.
2 code implementations • 23 Oct 2019 • Chen Wang, Roberto Martín-Martín, Danfei Xu, Jun Lv, Cewu Lu, Li Fei-Fei, Silvio Savarese, Yuke Zhu
We present 6-PACK, a deep learning approach to category-level 6D object pose tracking on RGB-D data.
Ranked #1 on
6D Pose Estimation using RGBD
on REAL275
(Rerr metric)
1 code implementation • NeurIPS 2019 • Danfei Xu, Roberto Martín-Martín, De-An Huang, Yuke Zhu, Silvio Savarese, Li Fei-Fei
Recent learning-to-plan methods have shown promising results on planning directly from observation space.
no code implementations • ICCV 2019 • Bokui Shen, Danfei Xu, Yuke Zhu, Leonidas J. Guibas, Li Fei-Fei, Silvio Savarese
A complex visual navigation task puts an agent in different situations which call for a diverse range of visual perception abilities.
no code implementations • 16 Aug 2019 • De-An Huang, Danfei Xu, Yuke Zhu, Animesh Garg, Silvio Savarese, Li Fei-Fei, Juan Carlos Niebles
The key technical challenge is that the symbol grounding is prone to error with limited training data and leads to subsequent symbolic planning failures.
no code implementations • ECCV 2020 • Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli, Li Fei-Fei, Juan Carlos Niebles
In this paper, we study the problem of procedure planning in instructional videos, which can be seen as a step towards enabling autonomous agents to plan for complex tasks in everyday settings such as cooking.
8 code implementations • CVPR 2019 • Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li Fei-Fei, Silvio Savarese
A key technical challenge in performing 6D object pose estimation from RGB-D image is to fully leverage the two complementary data sources.
Ranked #3 on
6D Pose Estimation using RGBD
on LineMOD
no code implementations • CVPR 2019 • De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, Juan Carlos Niebles
We hypothesize that to successfully generalize to unseen complex tasks from a single video demonstration, it is necessary to explicitly incorporate the compositional structure of the tasks into the model.
2 code implementations • CVPR 2018 • Danfei Xu, Dragomir Anguelov, Ashesh Jain
We present PointFusion, a generic 3D object detection method that leverages both image and 3D point cloud information.
1 code implementation • 4 Oct 2017 • Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, Silvio Savarese
In this work, we propose a novel robot learning framework called Neural Task Programming (NTP), which bridges the idea of few-shot learning from demonstration and neural program induction.
3 code implementations • CVPR 2017 • Danfei Xu, Yuke Zhu, Christopher B. Choy, Li Fei-Fei
In this work, we explicitly model the objects and their relationships using scene graphs, a visually-grounded graphical structure of an image.
no code implementations • 15 Jul 2016 • Yinxiao Li, Yan Wang, Yonghao Yue, Danfei Xu, Michael Case, Shih-Fu Chang, Eitan Grinspun, Peter Allen
A fully featured 3D model of the garment is constructed in real-time and volumetric features are then used to obtain the most similar model in the database to predict the object category and pose.
11 code implementations • 2 Apr 2016 • Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese
Inspired by the recent success of methods that employ shape priors to achieve robust 3D reconstructions, we propose a novel recurrent neural network architecture that we call the 3D Recurrent Reconstruction Neural Network (3D-R2N2).
Ranked #4 on
3D Reconstruction
on Data3D−R2N2