Search Results for author: Daniel E. Ho

Found 8 papers, 5 papers with code

Reconciling Risk Allocation and Prevalence Estimation in Public Health Using Batched Bandits

1 code implementation25 Oct 2021 Ben Chugg, Daniel E. Ho

In many public health settings, there is a perceived tension between allocating resources to known vulnerable areas and learning about the overall prevalence of the problem.

On the Opportunities and Risks of Foundation Models

no code implementations16 Aug 2021 Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Kohd, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, aditi raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang

AI is undergoing a paradigm shift with the rise of models (e. g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks.

Transfer Learning

Enhancing Environmental Enforcement with Near Real-Time Monitoring: Likelihood-Based Detection of Structural Expansion of Intensive Livestock Farms

1 code implementation29 May 2021 Ben Chugg, Brandon Anderson, Seiji Eicher, Sandy Lee, Daniel E. Ho

Much environmental enforcement in the United States has historically relied on either self-reported data or physical, resource-intensive, infrequent inspections.

Change Point Detection

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset

1 code implementation18 Apr 2021 Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, Daniel E. Ho

While a Transformer architecture (BERT) pretrained on a general corpus (Google Books and Wikipedia) improves performance, domain pretraining (using corpus of approximately 3. 5M decisions across all courts in the U. S. that is larger than BERT's) with a custom legal vocabulary exhibits the most substantial performance gains with CaseHOLD (gain of 7. 2% on F1, representing a 12% improvement on BERT) and consistent performance gains across two other legal tasks.

Multiple-choice Question Answering +2

Temporal Cluster Matching for Change Detection of Structures from Satellite Imagery

1 code implementation17 Mar 2021 Caleb Robinson, Anthony Ortiz, Juan M. Lavista Ferres, Brandon Anderson, Daniel E. Ho

For instance, in rural settings, the pre-construction area may look similar to the surrounding environment until the building is constructed.

Change Detection Data Augmentation +1

Affirmative Algorithms: The Legal Grounds for Fairness as Awareness

no code implementations18 Dec 2020 Daniel E. Ho, Alice Xiang

While there has been a flurry of research in algorithmic fairness, what is less recognized is that modern antidiscrimination law may prohibit the adoption of such techniques.

Causal Inference Fairness

Cannot find the paper you are looking for? You can Submit a new open access paper.