no code implementations • ECCV 2020 • Zudi Lin, Donglai Wei, Won-Dong Jang, Siyan Zhou, Xupeng Chen, Xueying Wang, Richard Schalek, Daniel Berger, Brian Matejek, Lee Kamentsky, Adi Peleg, Daniel Haehn, Thouis Jones, Toufiq Parag, Jeff Lichtman, Hanspeter Pfister
As a use case, we build an end-to-end active learning framework with our query suggestion method for 3D synapse detection and mitochondria segmentation in connectomics.
1 code implementation • 13 May 2024 • Edward Gaibor, Shruti Varade, Rohini Deshmukh, Tim Meyer, Mahsa Geshvadi, SangHyuk Kim, Vidhya Sree Narayanappa, Daniel Haehn
Can web-based image processing and visualization tools easily integrate into existing websites without significant time and effort?
no code implementations • 22 Mar 2024 • SangHyuk Kim, Edward Gaibor, Daniel Haehn
Melanoma is the most aggressive form of skin cancer, and early detection can significantly increase survival rates and prevent cancer spread.
no code implementations • 18 Nov 2023 • Kristin Qi, Jiali Cheng, Daniel Haehn
Content-based image retrieval (CBIR) with self-supervised learning (SSL) accelerates clinicians' interpretation of similar images without manual annotations.
1 code implementation • 30 Aug 2023 • Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger
For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.
1 code implementation • 10 May 2023 • Loraine Franke, Tae Young Park, Jie Luo, Yogesh Rathi, Steve Pieper, Lipeng Ning, Daniel Haehn
We present a real-time visualization system for Transcranial Magnetic Stimulation (TMS), a non-invasive neuromodulation technique for treating various brain disorders and mental health diseases.
no code implementations • 19 Feb 2023 • Daniel Karl I. Weidele, Shazia Afzal, Abel N. Valente, Cole Makuch, Owen Cornec, Long Vu, Dharmashankar Subramanian, Werner Geyer, Rahul Nair, Inge Vejsbjerg, Radu Marinescu, Paulito Palmes, Elizabeth M. Daly, Loraine Franke, Daniel Haehn
AutoDOViz seeks to lower the barrier of entry for data scientists in problem specification for reinforcement learning problems, leverage the benefits of AutoDO algorithms for RL pipeline search and finally, create visualizations and policy insights in order to facilitate the typical interactive nature when communicating problem formulation and solution proposals between DO experts and domain experts.
1 code implementation • 16 May 2020 • Loraine Franke, Daniel Karl I. Weidele, Fan Zhang, Suheyla Cetin-Karayumak, Steve Pieper, Lauren J. O'Donnell, Yogesh Rathi, Daniel Haehn
Tractography from high-dimensional diffusion magnetic resonance imaging (dMRI) data allows brain's structural connectivity analysis.
1 code implementation • 26 Apr 2020 • Daniel Haehn, Loraine Franke, Fan Zhang, Suheyla Cetin Karayumak, Steve Pieper, Lauren O'Donnell, Yogesh Rathi
Fiber tracking produces large tractography datasets that are tens of gigabytes in size consisting of millions of streamlines.
no code implementations • MIDL 2019 • Vincent Casser, Kai Kang, Hanspeter Pfister, Daniel Haehn
High-resolution connectomics data allows for the identification of dysfunctional mitochondria which are linked to a variety of diseases such as autism or bipolar.
no code implementations • CVPR 2018 • Daniel Haehn, Verena Kaynig, James Tompkin, Jeff W. Lichtman, Hanspeter Pfister
Automatic cell image segmentation methods in connectomics produce merge and split errors, which require correction through proofreading.
no code implementations • 27 Oct 2016 • Felix Gonda, Verena Kaynig, Ray Thouis, Daniel Haehn, Jeff Lichtman, Toufiq Parag, Hanspeter Pfister
We present an interactive approach to train a deep neural network pixel classifier for the segmentation of neuronal structures.