1 code implementation • 17 May 2022 • Honglin Chen, Rahul Venkatesh, Yoni Friedman, Jiajun Wu, Joshua B. Tenenbaum, Daniel L. K. Yamins, Daniel M. Bear
Self-supervised, category-agnostic segmentation of real-world images is a challenging open problem in computer vision.
1 code implementation • 19 Jul 2021 • Daniel Kunin, Javier Sagastuy-Brena, Lauren Gillespie, Eshed Margalit, Hidenori Tanaka, Surya Ganguli, Daniel L. K. Yamins
In this work we explore the limiting dynamics of deep neural networks trained with stochastic gradient descent (SGD).
3 code implementations • 15 Jun 2021 • Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R. T. Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B. Tenenbaum, Daniel L. K. Yamins, Judith E. Fan
While current vision algorithms excel at many challenging tasks, it is unclear how well they understand the physical dynamics of real-world environments.
no code implementations • 25 Mar 2021 • Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter, Abhishek Bhandwaldar, Dan Gutfreund, Daniel L. K. Yamins, James J DiCarlo, Josh Mcdermott, Antonio Torralba, Joshua B. Tenenbaum
To complete the task, an embodied agent must plan a sequence of actions to change the state of a large number of objects in the face of realistic physical constraints.
1 code implementation • 8 Dec 2020 • Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel L. K. Yamins, Hidenori Tanaka
Overall, by exploiting symmetry, our work demonstrates that we can analytically describe the learning dynamics of various parameter combinations at finite learning rates and batch sizes for state of the art architectures trained on any dataset.
2 code implementations • NeurIPS 2020 • Aran Nayebi, Sanjana Srivastava, Surya Ganguli, Daniel L. K. Yamins
We show that different classes of learning rules can be separated solely on the basis of aggregate statistics of the weights, activations, or instantaneous layer-wise activity changes, and that these results generalize to limited access to the trajectory and held-out architectures and learning curricula.
1 code implementation • 9 Jul 2020 • Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott, Daniel L. K. Yamins
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation.
1 code implementation • NeurIPS 2020 • Daniel M. Bear, Chaofei Fan, Damian Mrowca, Yunzhu Li, Seth Alter, Aran Nayebi, Jeremy Schwartz, Li Fei-Fei, Jiajun Wu, Joshua B. Tenenbaum, Daniel L. K. Yamins
To overcome these limitations, we introduce the idea of Physical Scene Graphs (PSGs), which represent scenes as hierarchical graphs, with nodes in the hierarchy corresponding intuitively to object parts at different scales, and edges to physical connections between parts.
2 code implementations • NeurIPS 2020 • Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, Surya Ganguli
Pruning the parameters of deep neural networks has generated intense interest due to potential savings in time, memory and energy both during training and at test time.
1 code implementation • ICML 2020 • Yunzhu Li, Toru Lin, Kexin Yi, Daniel M. Bear, Daniel L. K. Yamins, Jiajun Wu, Joshua B. Tenenbaum, Antonio Torralba
The abilities to perform physical reasoning and to adapt to new environments, while intrinsic to humans, remain challenging to state-of-the-art computational models.
1 code implementation • ICML 2020 • Daniel Kunin, Aran Nayebi, Javier Sagastuy-Brena, Surya Ganguli, Jonathan M. Bloom, Daniel L. K. Yamins
The neural plausibility of backpropagation has long been disputed, primarily for its use of non-local weight transport $-$ the biologically dubious requirement that one neuron instantaneously measure the synaptic weights of another.
1 code implementation • 2 Jan 2020 • Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt, Daniel L. K. Yamins, James J. DiCarlo
We therefore developed Brain-Score – a composite of multiple neural and behavioral benchmarks that score any ANN on how similar it is to the brain’s mechanisms for core object recognition – and we deployed it to evaluate a wide range of state-of-the-art deep ANNs.
no code implementations • 25 Sep 2019 • Piotr Tatarczyk, Damian Mrowca, Li Fei-Fei, Daniel L. K. Yamins, Nils Thuerey
Recently, neural-network based forward dynamics models have been proposed that attempt to learn the dynamics of physical systems in a deterministic way.
2 code implementations • NeurIPS 2019 • Jonas Kubilius, Martin Schrimpf, Kohitij Kar, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Pouya Bashivan, Jonathan Prescott-Roy, Kailyn Schmidt, Aran Nayebi, Daniel Bear, Daniel L. K. Yamins, James J. DiCarlo
Deep convolutional artificial neural networks (ANNs) are the leading class of candidate models of the mechanisms of visual processing in the primate ventral stream.
no code implementations • ICLR 2019 • Jonas Kubilius, Martin Schrimpf, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Kailyn Schmidt, Aran Nayebi, Daniel Bear, Daniel L. K. Yamins, James J. DiCarlo
Deep artificial neural networks with spatially repeated processing (a. k. a., deep convolutional ANNs) have been established as the best class of candidate models of visual processing in the primate ventral visual processing stream.
no code implementations • NeurIPS 2018 • Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum, Daniel L. K. Yamins
Humans have a remarkable capacity to understand the physical dynamics of objects in their environment, flexibly capturing complex structures and interactions at multiple levels of detail.
1 code implementation • NeurIPS 2018 • Aran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sussillo, James J. DiCarlo, Daniel L. K. Yamins
Feed-forward convolutional neural networks (CNNs) are currently state-of-the-art for object classification tasks such as ImageNet.
no code implementations • 21 Feb 2018 • Nick Haber, Damian Mrowca, Li Fei-Fei, Daniel L. K. Yamins
We demonstrate that this policy causes the agent to explore novel and informative interactions with its environment, leading to the generation of a spectrum of complex behaviors, including ego-motion prediction, object attention, and object gathering.
no code implementations • 21 Feb 2018 • Nick Haber, Damian Mrowca, Li Fei-Fei, Daniel L. K. Yamins
Moreover, the world model that the agent learns supports improved performance on object dynamics prediction and localization tasks.
no code implementations • ICLR 2018 • Kevin T. Feigelis, Blue Sheffer, Daniel L. K. Yamins
A core aspect of human intelligence is the ability to learn new tasks quickly and switch between them flexibly.
no code implementations • 22 Jun 2017 • Kevin T. Feigelis, Daniel L. K. Yamins
Recent results from neuroscience and artificial intelligence suggest the role of the general purpose visual representation may be played by a deep convolutional neural network, and give some clues how task modules based on such a representation might be discovered and constructed.
no code implementations • 12 Jun 2014 • Charles F. Cadieu, Ha Hong, Daniel L. K. Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib J. Majaj, James J. DiCarlo
Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task.