no code implementations • 26 Jun 2024 • Mehdi Ounissi, Ilias Sarbout, Jean-Pierre Hugot, Christine Martinez-Vinson, Dominique Berrebi, Daniel Racoceanu
This design focuses on critical regions in the latent space of H&E, enabling precise synthetic stain generation.
no code implementations • 1 Mar 2024 • Gabriel Jimenez, Leopold Hebert-Stevens, Benoit Delatour, Lev Stimmer, Daniel Racoceanu
In this study, we proposed and evaluated a graph-based framework to assess variations in Alzheimer's disease (AD) neuropathologies, focusing on classic (cAD) and rapid (rpAD) progression forms.
1 code implementation • 26 Apr 2023 • Mehdi Ounissi, Morwena Latouche, Daniel Racoceanu
Quantifying the phagocytosis of dynamic, unstained cells is essential for evaluating neurodegenerative diseases.
no code implementations • 25 Feb 2023 • Guanghui Fu, Gabriel Jimenez, Sophie Loizillon, Lydia Chougar, Didier Dormont, Romain Valabregue, Ninon Burgos, Stéphane Lehéricy, Daniel Racoceanu, Olivier Colliot, the ICEBERG Study Group
One may hypothesize that such property can be leveraged for better training of deep learning models.
1 code implementation • 13 Jan 2023 • Gabriel Jimenez, Anuradha Kar, Mehdi Ounissi, Léa Ingrassia, Susana Boluda, Benoît Delatour, Lev Stimmer, Daniel Racoceanu
In this study, we propose a DL-based methodology for semantic segmentation of tau lesions (i. e., neuritic plaques) in WSI of postmortem patients with AD.
no code implementations • 13 Jan 2023 • Gabriel Jimenez, Daniel Racoceanu
Thanks to the recent progress in machine learning algorithms for high-content image processing, computational pathology marks the rise of a new generation of medical discoveries and clinical protocols, including in brain disorders.
no code implementations • 2 Nov 2022 • Guanghui Fu, Gabriel Jimenez, Sophie Loizillon, Rosana El Jurdi, Lydia Chougar, Didier Dormont, Romain Valabregue, Ninon Burgos, Stéphane Lehéricy, Daniel Racoceanu, Olivier Colliot, the ICEBERG Study Group
In this paper, we propose a new model that integrates prior knowledge from different contrasts for red nucleus segmentation.
1 code implementation • 27 Nov 2018 • Chao-Hui Huang, Daniel Racoceanu
We also proposed an algorithm for lymphocyte segmentation based on nucleus detection and classification.
no code implementations • 1 Mar 2016 • Korsuk Sirinukunwattana, Josien P. W. Pluim, Hao Chen, Xiaojuan Qi, Pheng-Ann Heng, Yun Bo Guo, Li Yang Wang, Bogdan J. Matuszewski, Elia Bruni, Urko Sanchez, Anton Böhm, Olaf Ronneberger, Bassem Ben Cheikh, Daniel Racoceanu, Philipp Kainz, Michael Pfeiffer, Martin Urschler, David R. J. Snead, Nasir M. Rajpoot
Colorectal adenocarcinoma originating in intestinal glandular structures is the most common form of colon cancer.