Search Results for author: Daniel S. Marcus

Found 7 papers, 3 papers with code

MRI-based classification of IDH mutation and 1p/19q codeletion status of gliomas using a 2.5D hybrid multi-task convolutional neural network

no code implementations7 Oct 2022 Satrajit Chakrabarty, Pamela Lamontagne, Joshua Shimony, Daniel S. Marcus, Aristeidis Sotiras

A 2. 5D hybrid convolutional neural network was proposed to simultaneously localize the tumor and classify its molecular status by leveraging imaging features from MR scans and prior knowledge features from clinical records and tumor location.

Brain Tumor Segmentation Management +1

The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients

no code implementations13 Dec 2021 Bhakti Baheti, Satrajit Chakrabarty, Hamed Akbari, Michel Bilello, Benedikt Wiestler, Julian Schwarting, Evan Calabrese, Jeffrey Rudie, Syed Abidi, Mina Mousa, Javier Villanueva-Meyer, Brandon K. K. Fields, Florian Kofler, Russell Takeshi Shinohara, Juan Eugenio Iglesias, Tony C. W. Mok, Albert C. S. Chung, Marek Wodzinski, Artur Jurgas, Niccolo Marini, Manfredo Atzori, Henning Muller, Christoph Grobroehmer, Hanna Siebert, Lasse Hansen, Mattias P. Heinrich, Luca Canalini, Jan Klein, Annika Gerken, Stefan Heldmann, Alessa Hering, Horst K. Hahn, Mingyuan Meng, Lei Bi, Dagan Feng, Jinman Kim, Ramy A. Zeineldin, Mohamed E. Karar, Franziska Mathis-Ullrich, Oliver Burgert, Javid Abderezaei, Aymeric Pionteck, Agamdeep Chopra, Mehmet Kurt, Kewei Yan, Yonghong Yan, Zhe Tang, Jianqiang Ma, Sahar Almahfouz Nasser, Nikhil Cherian Kurian, Mohit Meena, Saqib Shamsi, Amit Sethi, Nicholas J. Tustison, Brian B. Avants, Philip Cook, James C. Gee, Lin Tian, Hastings Greer, Marc Niethammer, Andrew Hoopes, Malte Hoffmann, Adrian V. Dalca, Stergios Christodoulidis, Theo Estiene, Maria Vakalopoulou, Nikos Paragios, Daniel S. Marcus, Christos Davatzikos, Aristeidis Sotiras, Bjoern Menze, Spyridon Bakas, Diana Waldmannstetter

Registration of longitudinal brain MRI scans containing pathologies is challenging due to dramatic changes in tissue appearance.

Descriptive Image Registration +1

Correlation between image quality metrics of magnetic resonance images and the neural network segmentation accuracy

no code implementations1 Nov 2021 Rajarajeswari Muthusivarajan, Adrian Celaya, Joshua P. Yung, Satish Viswanath, Daniel S. Marcus, Caroline Chung, David Fuentes

Deep neural networks with multilevel connections process input data in complex ways to learn the information. A networks learning efficiency depends not only on the complex neural network architecture but also on the input training images. Medical image segmentation with deep neural networks for skull stripping or tumor segmentation from magnetic resonance images enables learning both global and local features of the images. Though medical images are collected in a controlled environment, there may be artifacts or equipment based variance that cause inherent bias in the input set. In this study, we investigated the correlation between the image quality metrics of MR images with the neural network segmentation accuracy. For that we have used the 3D DenseNet architecture and let the network trained on the same input but applying different methodologies to select the training data set based on the IQM values. The difference in the segmentation accuracy between models based on the random training inputs with IQM based training inputs shed light on the role of image quality metrics on segmentation accuracy. By running the image quality metrics to choose the training inputs, further we may tune the learning efficiency of the network and the segmentation accuracy.

Image Segmentation Segmentation +2

Cannot find the paper you are looking for? You can Submit a new open access paper.