no code implementations • 11 May 2023 • Firas Khader, Jakob Nikolas Kather, Tianyu Han, Sven Nebelung, Christiane Kuhl, Johannes Stegmaier, Daniel Truhn
However, while the conventional transformer allows for a simultaneous processing of a large set of input tokens, the computational demand scales quadratically with the number of input tokens and thus quadratically with the number of image patches.
no code implementations • 11 May 2023 • Firas Khader, Gustav Müller-Franzes, Tianyu Han, Sven Nebelung, Christiane Kuhl, Johannes Stegmaier, Daniel Truhn
X-rays are widely available and even if the CT reconstructed from these radiographs is not a replacement of a complete CT in the diagnostic setting, it might serve to spare the patients from radiation where a CT is only acquired for rough measurements such as determining organ size.
1 code implementation • 18 Apr 2023 • Gustav Müller-Franzes, Fritz Müller-Franzes, Luisa Huck, Vanessa Raaff, Eva Kemmer, Firas Khader, Soroosh Tayebi Arasteh, Teresa Nolte, Jakob Nikolas Kather, Sven Nebelung, Christiane Kuhl, Daniel Truhn
Accurate and automatic segmentation of fibroglandular tissue in breast MRI screening is essential for the quantification of breast density and background parenchymal enhancement.
no code implementations • 14 Apr 2023 • Tianyu Han, Lisa C. Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser, Alexander Löser, Daniel Truhn, Keno K. Bressem
As large language models (LLMs) like OpenAI's GPT series continue to make strides, we witness the emergence of artificial intelligence applications in an ever-expanding range of fields.
1 code implementation • 3 Feb 2023 • Coen de Vente, Koenraad A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, Firas Khader, Daniel Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, Adrian Galdran, Miguel Ángel González Ballester, Gustavo Carneiro, Devika R G, Hrishikesh P S, Densen Puthussery, Hong Liu, Zekang Yang, Satoshi Kondo, Satoshi Kasai, Edward Wang, Ashritha Durvasula, Jónathan Heras, Miguel Ángel Zapata, Teresa Araújo, Guilherme Aresta, Hrvoje Bogunović, Mustafa Arikan, Yeong Chan Lee, Hyun Bin Cho, Yoon Ho Choi, Abdul Qayyum, Imran Razzak, Bram van Ginneken, Hans G. Lemij, Clara I. Sánchez
Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible.
1 code implementation • 3 Feb 2023 • Soroosh Tayebi Arasteh, Alexander Ziller, Christiane Kuhl, Marcus Makowski, Sven Nebelung, Rickmer Braren, Daniel Rueckert, Daniel Truhn, Georgios Kaissis
In this work, we evaluated the effect of privacy-preserving training of AI models for chest radiograph diagnosis regarding accuracy and fairness compared to non-private training.
1 code implementation • 23 Jan 2023 • Sophia J. Wagner, Daniel Reisenbüchler, Nicholas P. West, Jan Moritz Niehues, Gregory Patrick Veldhuizen, Philip Quirke, Heike I. Grabsch, Piet A. van den Brandt, Gordon G. A. Hutchins, Susan D. Richman, Tanwei Yuan, Rupert Langer, Josien Christina Anna Jenniskens, Kelly Offermans, Wolfram Mueller, Richard Gray, Stephen B. Gruber, Joel K. Greenson, Gad Rennert, Joseph D. Bonner, Daniel Schmolze, Jacqueline A. James, Maurice B. Loughrey, Manuel Salto-Tellez, Hermann Brenner, Michael Hoffmeister, Daniel Truhn, Julia A. Schnabel, Melanie Boxberg, Tingying Peng, Jakob Nikolas Kather
Methods: In this study, we developed a new fully transformer-based pipeline for end-to-end biomarker prediction from pathology slides.
1 code implementation • 18 Dec 2022 • Firas Khader, Gustav Mueller-Franzes, Tianci Wang, Tianyu Han, Soroosh Tayebi Arasteh, Christoph Haarburger, Johannes Stegmaier, Keno Bressem, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
Multimodal deep learning has been used to predict clinical endpoints and diagnoses from clinical routine data.
1 code implementation • 14 Dec 2022 • Gustav Müller-Franzes, Jan Moritz Niehues, Firas Khader, Soroosh Tayebi Arasteh, Christoph Haarburger, Christiane Kuhl, Tianci Wang, Tianyu Han, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
The success of Deep Learning applications critically depends on the quality and scale of the underlying training data.
1 code implementation • 24 Nov 2022 • Soroosh Tayebi Arasteh, Peter Isfort, Marwin Saehn, Gustav Mueller-Franzes, Firas Khader, Jakob Nikolas Kather, Christiane Kuhl, Sven Nebelung, Daniel Truhn
Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL).
1 code implementation • 7 Nov 2022 • Firas Khader, Gustav Mueller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baessler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
Furthermore, we demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (dice score 0. 91 vs. 0. 95 without vs. with synthetic data).
no code implementations • 27 Sep 2022 • Lisa C. Adams, Felix Busch, Daniel Truhn, Marcus R. Makowski, Hugo JWL. Aerts, Keno K. Bressem
Generative models such as DALL-E 2 could represent a promising future tool for image generation, augmentation, and manipulation for artificial intelligence research in radiology provided that these models have sufficient medical domain knowledge.
1 code implementation • 22 Nov 2021 • Tianyu Han, Jakob Nikolas Kather, Federico Pedersoli, Markus Zimmermann, Sebastian Keil, Maximilian Schulze-Hagen, Marc Terwoelbeck, Peter Isfort, Christoph Haarburger, Fabian Kiessling, Volkmar Schulz, Christiane Kuhl, Sven Nebelung, Daniel Truhn
We present a generic solution for this problem by a methodology that allows the prediction of progression risk and morphology in individuals using a latent extrapolation optimization approach.
1 code implementation • 25 Nov 2020 • Tianyu Han, Sven Nebelung, Federico Pedersoli, Markus Zimmermann, Maximilian Schulze-Hagen, Michael Ho, Christoph Haarburger, Fabian Kiessling, Christiane Kuhl, Volkmar Schulz, Daniel Truhn
Contrary to previous research on adversarially trained models, we found that the accuracy of such models was equal to standard models when sufficiently large datasets and dual batch norm training were used.
no code implementations • 23 Apr 2020 • Michael Gadermayr, Maximilian Tschuchnig, Laxmi Gupta, Dorit Merhof, Nils Krämer, Daniel Truhn, Burkhard Gess
Generative adversarial networks using a cycle-consistency loss facilitate unpaired training of image-translation models and thereby exhibit a very high potential in manifold medical applications.
no code implementations • 13 Oct 2019 • Christoph Haarburger, Justus Schock, Daniel Truhn, Philippe Weitz, Gustav Mueller-Franzes, Leon Weninger, Dorit Merhof
From these segmentations, we extract a high number of plausible feature vectors for each lung tumor and analyze feature variance with respect to the segmentations.
1 code implementation • 14 Jun 2019 • Christoph Haarburger, Michael Baumgartner, Daniel Truhn, Mirjam Broeckmann, Hannah Schneider, Simone Schrading, Christiane Kuhl, Dorit Merhof
Achieving an AUROC of 0. 89, we compare the performance of our approach to Mask R-CNN and Retina U-Net as well as a radiologist.