no code implementations • 17 Sep 2022 • Athena Taymourtash, Hamza Kebiri, Ernst Schwartz, Karl-Heinz Nenning, Sebastien Tourbier, Gregor Kasprian, Daniela Prayer, Meritxell Bach Cuadra, Georg Langs
Resting-state functional Magnetic Resonance Imaging (fMRI) is a powerful imaging technique for studying functional development of the brain in utero.
1 code implementation • 5 Apr 2022 • Lucas Fidon, Michael Aertsen, Florian Kofler, Andrea Bink, Anna L. David, Thomas Deprest, Doaa Emam, Frédéric Guffens, András Jakab, Gregor Kasprian, Patric Kienast, Andrew Melbourne, Bjoern Menze, Nada Mufti, Ivana Pogledic, Daniela Prayer, Marlene Stuempflen, Esther Van Elslander, Sébastien Ourselin, Jan Deprest, Tom Vercauteren
Our method automatically discards the voxel-level labeling predicted by the backbone AI that violate expert knowledge and relies on a fallback for those voxels.
1 code implementation • 11 Feb 2022 • Daniel Sobotka, Michael Ebner, Ernst Schwartz, Karl-Heinz Nenning, Athena Taymourtash, Tom Vercauteren, Sebastien Ourselin, Gregor Kasprian, Daniela Prayer, Georg Langs, Roxane Licandro
Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI.
1 code implementation • 9 Aug 2021 • Lucas Fidon, Michael Aertsen, Nada Mufti, Thomas Deprest, Doaa Emam, Frédéric Guffens, Ernst Schwartz, Michael Ebner, Daniela Prayer, Gregor Kasprian, Anna L. David, Andrew Melbourne, Sébastien Ourselin, Jan Deprest, Georg Langs, Tom Vercauteren
The performance of deep neural networks typically increases with the number of training images.
1 code implementation • 8 Jan 2020 • Lucas Fidon, Michael Aertsen, Thomas Deprest, Doaa Emam, Frédéric Guffens, Nada Mufti, Esther Van Elslander, Ernst Schwartz, Michael Ebner, Daniela Prayer, Gregor Kasprian, Anna L. David, Andrew Melbourne, Sébastien Ourselin, Jan Deprest, Georg Langs, Tom Vercauteren
In order to improve the robustness of machine learning systems, Distributionally Robust Optimization (DRO) has been proposed as a generalization of Empirical Risk Minimization (ERM).