no code implementations • 2 Jul 2024 • Adnan Mehonic, Daniele Ielmini, Kaushik Roy, Onur Mutlu, Shahar Kvatinsky, Teresa Serrano-Gotarredona, Bernabe Linares-Barranco, Sabina Spiga, Sergey Savelev, Alexander G Balanov, Nitin Chawla, Giuseppe Desoli, Gerardo Malavena, Christian Monzio Compagnoni, Zhongrui Wang, J Joshua Yang, Ghazi Sarwat Syed, Abu Sebastian, Thomas Mikolajick, Beatriz Noheda, Stefan Slesazeck, Bernard Dieny, Tuo-Hung, Hou, Akhil Varri, Frank Bruckerhoff-Pluckelmann, Wolfram Pernice, Xixiang Zhang, Sebastian Pazos, Mario Lanza, Stefan Wiefels, Regina Dittmann, Wing H Ng, Mark Buckwell, Horatio RJ Cox, Daniel J Mannion, Anthony J Kenyon, Yingming Lu, Yuchao Yang, Damien Querlioz, Louis Hutin, Elisa Vianello, Sayeed Shafayet Chowdhury, Piergiulio Mannocci, Yimao Cai, Zhong Sun, Giacomo Pedretti, John Paul Strachan, Dmitri Strukov, Manuel Le Gallo, Stefano Ambrogio, Ilia Valov, Rainer Waser
The roadmap is organized into several thematic sections, outlining current computing challenges, discussing the neuromorphic computing approach, analyzing mature and currently utilized technologies, providing an overview of emerging technologies, addressing material challenges, exploring novel computing concepts, and finally examining the maturity level of emerging technologies while determining the next essential steps for their advancement.
no code implementations • 29 Nov 2023 • Serena Curzel, Fabrizio Ferrandi, Leandro Fiorin, Daniele Ielmini, Cristina Silvano, Francesco Conti, Luca Bompani, Luca Benini, Enrico Calore, Sebastiano Fabio Schifano, Cristian Zambelli, Maurizio Palesi, Giuseppe Ascia, Enrico Russo, Valeria Cardellini, Salvatore Filippone, Francesco Lo Presti, Stefania Perri
Given their increasing size and complexity, the need for efficient execution of deep neural networks has become increasingly pressing in the design of heterogeneous High-Performance Computing (HPC) and edge platforms, leading to a wide variety of proposals for specialized deep learning architectures and hardware accelerators.
no code implementations • 27 Jun 2023 • Cristina Silvano, Daniele Ielmini, Fabrizio Ferrandi, Leandro Fiorin, Serena Curzel, Luca Benini, Francesco Conti, Angelo Garofalo, Cristian Zambelli, Enrico Calore, Sebastiano Fabio Schifano, Maurizio Palesi, Giuseppe Ascia, Davide Patti, Nicola Petra, Davide De Caro, Luciano Lavagno, Teodoro Urso, Valeria Cardellini, Gian Carlo Cardarilli, Robert Birke, Stefania Perri
This survey summarizes and classifies the most recent developments in DL accelerators, focusing on their role in meeting the performance demands of HPC applications.
no code implementations • 25 Apr 2023 • Yang Li, Wei Wang, Ming Wang, Chunmeng Dou, Zhengyu Ma, Huihui Zhou, Peng Zhang, Nicola Lepri, Xumeng Zhang, Qing Luo, Xiaoxin Xu, Guanhua Yang, Feng Zhang, Ling Li, Daniele Ielmini, Ming Liu
We propose a binary stochastic learning algorithm that modifies all elementary neural network operations, by introducing (i) stochastic binarization of both the forwarding signals and the activation function derivatives, (ii) signed binarization of the backpropagating errors, and (iii) step-wised weight updates.
no code implementations • 5 May 2020 • Zhong Sun, Giacomo Pedretti, Alessandro Bricalli, Daniele Ielmini
Here we show a crosspoint resistive memory circuit with feedback configuration can execute linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory.