1 code implementation • 4 Sep 2023 • Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Kwei-Herng Lai, Daochen Zha, Ruixiang Tang, Fan Yang, Alfredo Costilla Reyes, Kaixiong Zhou, Xiaoqian Jiang, Xia Hu
The exponential growth in scholarly publications necessitates advanced tools for efficient article retrieval, especially in interdisciplinary fields where diverse terminologies are used to describe similar research.
no code implementations • 28 Aug 2023 • Kwei-Herng Lai, Daochen Zha, Huiyuan Chen, Mangesh Bendre, Yuzhong Chen, Mahashweta Das, Hao Yang, Xia Hu
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
2 code implementations • 19 Jul 2023 • Xiao-Yang Liu, Guoxuan Wang, Daochen Zha
In light of this, we aim to democratize Internet-scale financial data for LLMs, which is an open challenge due to diverse data sources, low signal-to-noise ratio, and high time-validity.
1 code implementation • 17 Jun 2023 • Zhiyao Zhou, Sheng Zhou, Bochao Mao, Xuanyi Zhou, Jiawei Chen, Qiaoyu Tan, Daochen Zha, Can Wang, Yan Feng, Chun Chen
Graph Neural Networks (GNNs) have emerged as the de facto standard for representation learning on graphs, owing to their ability to effectively integrate graph topology and node attributes.
no code implementations • 24 May 2023 • Zirui Liu, Guanchu Wang, Shaochen Zhong, Zhaozhuo Xu, Daochen Zha, Ruixiang Tang, Zhimeng Jiang, Kaixiong Zhou, Vipin Chaudhary, Shuai Xu, Xia Hu
While the model parameters do contribute to memory usage, the primary memory bottleneck during training arises from storing feature maps, also known as activations, as they are crucial for gradient calculation.
1 code implementation • 3 May 2023 • Daochen Zha, Louis Feng, Liang Luo, Bhargav Bhushanam, Zirui Liu, Yusuo Hu, Jade Nie, Yuzhen Huang, Yuandong Tian, Arun Kejariwal, Xia Hu
In this work, we explore a "pre-train, and search" paradigm for efficient sharding.
1 code implementation • 25 Apr 2023 • Xiao-Yang Liu, Ziyi Xia, Hongyang Yang, Jiechao Gao, Daochen Zha, Ming Zhu, Christina Dan Wang, Zhaoran Wang, Jian Guo
The financial market is a particularly challenging playground for deep reinforcement learning due to its unique feature of dynamic datasets.
no code implementations • 21 Apr 2023 • Guanchu Wang, Ninghao Liu, Daochen Zha, Xia Hu
Anomaly detection, where data instances are discovered containing feature patterns different from the majority, plays a fundamental role in various applications.
10 code implementations • 17 Mar 2023 • Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong, Xia Hu
Artificial Intelligence (AI) is making a profound impact in almost every domain.
no code implementations • 28 Feb 2023 • Diego Martinez, Daochen Zha, Qiaoyu Tan, Xia Hu
However, the existing systems often have a very small search space for feature preprocessing with the same preprocessing pipeline applied to all the numerical features.
no code implementations • 18 Feb 2023 • Sirui Ding, Ruixiang Tang, Daochen Zha, Na Zou, Kai Zhang, Xiaoqian Jiang, Xia Hu
To tackle this problem, this work proposes a fair machine learning framework targeting graft failure prediction in liver transplant.
1 code implementation • 12 Jan 2023 • Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Xia Hu
The role of data in building AI systems has recently been significantly magnified by the emerging concept of data-centric AI (DCAI), which advocates a fundamental shift from model advancements to ensuring data quality and reliability.
1 code implementation • 23 Dec 2022 • Qiaoyu Tan, Xin Zhang, Ninghao Liu, Daochen Zha, Li Li, Rui Chen, Soo-Hyun Choi, Xia Hu
To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP.
no code implementations • 22 Oct 2022 • Aaron Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra Dilkina, Yuandong Tian
Optimization problems with nonlinear cost functions and combinatorial constraints appear in many real-world applications but remain challenging to solve efficiently compared to their linear counterparts.
no code implementations • 19 Oct 2022 • Zirui Liu, Shengyuan Chen, Kaixiong Zhou, Daochen Zha, Xiao Huang, Xia Hu
To this end, we propose Randomized Sparse Computation, which for the first time demonstrate the potential of training GNNs with approximated operations.
1 code implementation • 5 Oct 2022 • Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuandong Tian, Arun Kejariwal, Xia Hu
Although prior work has explored learning-based approaches for the device placement of computational graphs, embedding table placement remains to be a challenging problem because of 1) the operation fusion of embedding tables, and 2) the generalizability requirement on unseen placement tasks with different numbers of tables and/or devices.
2 code implementations • 26 Aug 2022 • Daochen Zha, Kwei-Herng Lai, Qiaoyu Tan, Sirui Ding, Na Zou, Xia Hu
Motivated by this, we investigate developing a learning-based over-sampling algorithm to optimize the classification performance, which is a challenging task because of the huge and hierarchical decision space.
Hierarchical Reinforcement Learning
reinforcement-learning
+1
1 code implementation • 12 Aug 2022 • Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie, Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, Xia Hu
This is a significant design challenge of distributed systems named embedding table sharding, i. e., how we should partition the embedding tables to balance the costs across devices, which is a non-trivial task because 1) it is hard to efficiently and precisely measure the cost, and 2) the partition problem is known to be NP-hard.
no code implementations • 27 May 2022 • Yicheng Wang, Xiaotian Han, Chia-Yuan Chang, Daochen Zha, Ulisses Braga-Neto, Xia Hu
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
3 code implementations • 14 Feb 2022 • Guanchu Wang, Zaid Pervaiz Bhat, Zhimeng Jiang, Yi-Wei Chen, Daochen Zha, Alfredo Costilla Reyes, Afshin Niktash, Gorkem Ulkar, Erman Okman, Xuanting Cai, Xia Hu
DNNs have been an effective tool for data processing and analysis.
1 code implementation • 5 Jan 2022 • Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, Xia Hu
Prior work has approached TSC from two major directions: (1) similarity-based methods that classify time-series based on the nearest neighbors, and (2) deep learning models that directly learn the representations for classification in a data-driven manner.
no code implementations • 4 Nov 2021 • Mingyang Wan, Daochen Zha, Ninghao Liu, Na Zou
Machine learning models are becoming pervasive in high-stakes applications.
1 code implementation • 9 Aug 2021 • Daochen Zha, Zaid Pervaiz Bhat, Yi-Wei Chen, Yicheng Wang, Sirui Ding, Jiaben Chen, Kwei-Herng Lai, Mohammad Qazim Bhat, Anmoll Kumar Jain, Alfredo Costilla Reyes, Na Zou, Xia Hu
Action recognition is an important task for video understanding with broad applications.
1 code implementation • NeurIPS 2021 • Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, Xia Hu
To this end, we analyze the bottleneck of deep GNNs by leveraging the Dirichlet energy of node embeddings, and propose a generalizable principle to guide the training of deep GNNs.
1 code implementation • 11 Jun 2021 • Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, Ji Liu
Games are abstractions of the real world, where artificial agents learn to compete and cooperate with other agents.
1 code implementation • 10 Jun 2021 • Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, Xia Hu
Supervised regression to demonstrations has been demonstrated to be a stable way to train deep policy networks.
no code implementations • 17 May 2021 • Yuening Li, Zhengzhang Chen, Daochen Zha, Mengnan Du, Denghui Zhang, Haifeng Chen, Xia Hu
Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals.
3 code implementations • ICLR 2021 • Daochen Zha, Wenye Ma, Lei Yuan, Xia Hu, Ji Liu
Unfortunately, methods based on intrinsic rewards often fall short in procedurally-generated environments, where a different environment is generated in each episode so that the agent is not likely to visit the same state more than once.
1 code implementation • 18 Sep 2020 • Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar, Yile Chen, Purav Zumkhawaka, Minyang Wan, Diego Martinez, Xia Hu
We present TODS, an automated Time Series Outlier Detection System for research and industrial applications.
1 code implementation • 16 Sep 2020 • Daochen Zha, Kwei-Herng Lai, Mingyang Wan, Xia Hu
Specifically, existing strategies have been focused on making the top instances more likely to be anomalous based on the feedback.
1 code implementation • 26 Jun 2020 • Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, Xia Hu
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
no code implementations • 19 Jun 2020 • Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, Xia Hu
Outlier detection is an important data mining task with numerous practical applications such as intrusion detection, credit card fraud detection, and video surveillance.
1 code implementation • NeurIPS 2020 • Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, Xia Hu
Graph neural networks (GNNs), which learn the representation of a node by aggregating its neighbors, have become an effective computational tool in downstream applications.
1 code implementation • 7 Jun 2020 • Kwei-Herng Lai, Daochen Zha, Yuening Li, Xia Hu
In this work, we introduce dual policy distillation(DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment and extract knowledge from each other to enhance their learning.
no code implementations • 12 Mar 2020 • Yuening Li, Daochen Zha, Praveen Kumar Venugopal, Na Zou, Xia Hu
Outlier detection is an important task for various data mining applications.
no code implementations • 17 Dec 2019 • Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, Xia Hu
To further improve the graph representation learning ability, hierarchical GNN has been explored.
8 code implementations • 10 Oct 2019 • Daochen Zha, Kwei-Herng Lai, Yuanpu Cao, Songyi Huang, Ruzhe Wei, Junyu Guo, Xia Hu
The goal of RLCard is to bridge reinforcement learning and imperfect information games, and push forward the research of reinforcement learning in domains with multiple agents, large state and action space, and sparse reward.
1 code implementation • 7 Oct 2019 • Yuening Li, Daochen Zha, Na Zou, Xia Hu
PyODDS is an end-to end Python system for outlier detection with database support.
no code implementations • 19 Jun 2019 • Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, Xia Hu
Experience replay enables reinforcement learning agents to memorize and reuse past experiences, just as humans replay memories for the situation at hand.
1 code implementation • 5 Nov 2017 • Daochen Zha, Chenliang Li
With a few seed words relevant to each category, SMTM conducts multi-label classification for a collection of documents without any labeled document.