no code implementations • 9 May 2024 • Siddharth Agarwal, David A. Wood, Mariusz Grzeda, Chandhini Suresh, Munaib Din, James Cole, Marc Modat, Thomas C Booth
Conclusion: The paucity of eligible studies reflects that most abnormality detection AI studies were not adequately validated in representative clinical cohorts.
no code implementations • 5 May 2024 • David A. Wood, Emily Guilhem, Sina Kafiabadi, Ayisha Al Busaidi, Kishan Dissanayake, Ahmed Hammam, Nina Mansoor, Matthew Townend, Siddharth Agarwal, Yiran Wei, Asif Mazumder, Gareth J. Barker, Peter Sasieni, Sebastien Ourselin, James H. Cole, Thomas C. Booth
To address these challenges, we present a self-supervised text-vision framework that learns to detect clinically relevant abnormalities in brain MRI scans by directly leveraging the rich information contained in accompanying free-text neuroradiology reports.
no code implementations • 11 Apr 2024 • Reza Hafezi, David A. Wood, Firouzeh Rosa Taghikhah
Climate change and environmental concerns represent a global crisis accompanied by significant economic challenges.
no code implementations • 6 Nov 2023 • David A. Wood
Clinical neuroimaging data is naturally hierarchical.
no code implementations • 15 Jun 2021 • David A. Wood, Sina Kafiabadi, Ayisha Al Busaidi, Emily Guilhem, Antanas Montvila, Siddharth Agarwal, Jeremy Lynch, Matthew Townend, Gareth Barker, Sebastien Ourselin, James H. Cole, Thomas C. Booth
The growing demand for head magnetic resonance imaging (MRI) examinations, along with a global shortage of radiologists, has led to an increase in the time taken to report head MRI scans around the world.
1 code implementation • 8 Jul 2020 • David A. Wood, Sina Kafiabadi, Aisha Al Busaidi, Emily Guilhem, Jeremy Lynch, Matthew Townend, Antanas Montvila, Juveria Siddiqui, Naveen Gadapa, Matthew Benger, Gareth Barker, Sebastian Ourselin, James H. Cole, Thomas C. Booth
Natural language processing (NLP) shows promise as a means to automate the labelling of hospital-scale neuroradiology magnetic resonance imaging (MRI) datasets for computer vision applications.
no code implementations • 7 Jul 2020 • Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto, Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, Éder F. Zulian
The open-source and community-supported gem5 simulator is one of the most popular tools for computer architecture research.
Hardware Architecture
no code implementations • MIDL 2019 • David A. Wood, Jeremy Lynch, Sina Kafiabadi, Emily Guilhem, Aisha Al Busaidi, Antanas Montvila, Thomas Varsavsky, Juveria Siddiqui, Naveen Gadapa, Matthew Townend, Martin Kiik, Keena Patel, Gareth Barker, Sebastian Ourselin, James H. Cole, Thomas C. Booth
Labelling large datasets for training high-capacity neural networks is a major obstacle to the development of deep learning-based medical imaging applications.