Search Results for author: David Raposo

Found 15 papers, 7 papers with code

Synthetic Returns for Long-Term Credit Assignment

2 code implementations24 Feb 2021 David Raposo, Sam Ritter, Adam Santoro, Greg Wayne, Theophane Weber, Matt Botvinick, Hado van Hasselt, Francis Song

We propose state-associative (SA) learning, where the agent learns associations between states and arbitrarily distant future rewards, then propagates credit directly between the two.

Symbolic Behaviour in Artificial Intelligence

no code implementations5 Feb 2021 Adam Santoro, Andrew Lampinen, Kory Mathewson, Timothy Lillicrap, David Raposo

This approach will allow for AI to interpret something as symbolic on its own rather than simply manipulate things that are only symbols to human onlookers, and thus will ultimately lead to AI with more human-like symbolic fluency.

Rapid Task-Solving in Novel Environments

no code implementations ICLR 2021 Sam Ritter, Ryan Faulkner, Laurent Sartran, Adam Santoro, Matt Botvinick, David Raposo

We show that EPNs learn to execute a value iteration-like planning algorithm and that they generalize to situations beyond their training experience.

AlignNet: Self-supervised Alignment Module

no code implementations25 Sep 2019 Antonia Creswell, Luis Piloto, David Barrett, Kyriacos Nikiforou, David Raposo, Marta Garnelo, Peter Battaglia, Murray Shanahan

The natural world consists of objects that we perceive as persistent in space and time, even though these objects appear, disappear and reappear in our field of view as we move.

Question Answering

Deep reinforcement learning with relational inductive biases

no code implementations ICLR 2019 Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, Peter Battaglia

We introduce an approach for augmenting model-free deep reinforcement learning agents with a mechanism for relational reasoning over structured representations, which improves performance, learning efficiency, generalization, and interpretability.

reinforcement-learning Relational Reasoning +2

Relational Deep Reinforcement Learning

7 code implementations5 Jun 2018 Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, Peter Battaglia

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning.

reinforcement-learning Relational Reasoning +2

Hyperbolic Attention Networks

no code implementations ICLR 2019 Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, Nando de Freitas

We introduce hyperbolic attention networks to endow neural networks with enough capacity to match the complexity of data with hierarchical and power-law structure.

Machine Translation Question Answering +2

Cannot find the paper you are looking for? You can Submit a new open access paper.