no code implementations • 17 Nov 2022 • Jeroen Bertels, David Robben, Robin Lemmens, Dirk Vandermeulen
In this article, we look into some essential aspects of convolutional neural networks (CNNs) with the focus on medical image segmentation.
1 code implementation • 17 Nov 2022 • Jeroen Bertels, David Robben, Robin Lemmens, Dirk Vandermeulen
We know that both the CNN mapping function and the sampling scheme are of paramount importance for CNN-based image analysis.
no code implementations • 9 Nov 2022 • Jeroen Bertels, David Robben, Dirk Vandermeulen, Robin Lemmens
This article focuses on the control center of each human body: the brain.
no code implementations • 8 Nov 2022 • Jeroen Bertels, David Robben, Dirk Vandermeulen, Paul Suetens
The clinical interest is often to measure the volume of a structure, which is typically derived from a segmentation.
2 code implementations • 19 Jul 2022 • Sofie Tilborghs, Jeroen Bertels, David Robben, Dirk Vandermeulen, Frederik Maes
We find and propose heuristic combinations of $\Phi$ and $\epsilon$ that work in a segmentation setting with either missing or empty labels.
1 code implementation • 14 Jun 2022 • Moritz Roman Hernandez Petzsche, Ezequiel de la Rosa, Uta Hanning, Roland Wiest, Waldo Enrique Valenzuela Pinilla, Mauricio Reyes, Maria Ines Meyer, Sook-Lei Liew, Florian Kofler, Ivan Ezhov, David Robben, Alexander Hutton, Tassilo Friedrich, Teresa Zarth, Johannes Bürkle, The Anh Baran, Bjoern Menze, Gabriel Broocks, Lukas Meyer, Claus Zimmer, Tobias Boeckh-Behrens, Maria Berndt, Benno Ikenberg, Benedikt Wiestler, Jan S. Kirschke
The test dataset will be used for model validation only and will not be released to the public.
no code implementations • 31 Mar 2021 • Ezequiel de la Rosa, David Robben, Diana M. Sima, Jan S. Kirschke, Bjoern Menze
We show that our approach is able to generate AIFs without any manual annotation, and hence avoiding manual rater's influences.
no code implementations • 23 Nov 2020 • Abel Díaz Berenguer, Hichem Sahli, Boris Joukovsky, Maryna Kvasnytsia, Ine Dirks, Mitchel Alioscha-Perez, Nikos Deligiannis, Panagiotis Gonidakis, Sebastián Amador Sánchez, Redona Brahimetaj, Evgenia Papavasileiou, Jonathan Cheung-Wai Chana, Fei Li, Shangzhen Song, Yixin Yang, Sofie Tilborghs, Siri Willems, Tom Eelbode, Jeroen Bertels, Dirk Vandermeulen, Frederik Maes, Paul Suetens, Lucas Fidon, Tom Vercauteren, David Robben, Arne Brys, Dirk Smeets, Bart Ilsen, Nico Buls, Nina Watté, Johan de Mey, Annemiek Snoeckx, Paul M. Parizel, Julien Guiot, Louis Deprez, Paul Meunier, Stefaan Gryspeerdt, Kristof De Smet, Bart Jansen, Jef Vandemeulebroucke
Our motivating application is a real-world problem: COVID-19 classification from CT imaging, for which we present an explainable Deep Learning approach based on a semi-supervised classification pipeline that employs variational autoencoders to extract efficient feature embedding.
no code implementations • 9 Oct 2020 • Jaime Simarro, Ezequiel de la Rosa, Thijs Vande Vyvere, David Robben, Diana M. Sima
Moreover, we test the potential of the method for detecting other anomalies such as low quality images, preprocessing inaccuracies, artifacts, and even the presence of post-operative signs (such as a craniectomy or a brain shunt).
no code implementations • 4 Oct 2020 • Ezequiel de la Rosa, Diana M. Sima, Bjoern Menze, Jan S. Kirschke, David Robben
Perfusion imaging is crucial in acute ischemic stroke for quantifying the salvageable penumbra and irreversibly damaged core lesions.
2 code implementations • 29 Jul 2020 • Sofie Tilborghs, Ine Dirks, Lucas Fidon, Siri Willems, Tom Eelbode, Jeroen Bertels, Bart Ilsen, Arne Brys, Adriana Dubbeldam, Nico Buls, Panagiotis Gonidakis, Sebastián Amador Sánchez, Annemiek Snoeckx, Paul M. Parizel, Johan de Mey, Dirk Vandermeulen, Tom Vercauteren, David Robben, Dirk Smeets, Frederik Maes, Jef Vandemeulebroucke, Paul Suetens
There is an increasing number of studies that propose to use deep learning to provide fast and accurate quantification of COVID-19 using chest CT scans.
no code implementations • 3 Feb 2020 • Mattias Billast, Maria Ines Meyer, Diana M. Sima, David Robben
A discriminator model is then trained to predict if two lesion segmentations are based on scans acquired using the same scanner type or not, achieving a 78% accuracy in this task.
no code implementations • 6 Nov 2019 • Jeroen Bertels, David Robben, Dirk Vandermeulen, Paul Suetens
Segmentation is a fundamental task in medical image analysis.
no code implementations • 5 Nov 2019 • Joeri Nicolaes, Steven Raeymaeckers, David Robben, Guido Wilms, Dirk Vandermeulen, Cesar Libanati, Marc Debois
We present a detection method to opportunistically screen spine-containing CT images for the presence of these vertebral fractures.
no code implementations • 6 Dec 2018 • David Robben, Anna M. M. Boers, Henk A. Marquering, Lucianne L. C. M. Langezaal, Yvo B. W. E. M. Roos, Robert J. van Oostenbrugge, Wim H. van Zwam, Diederik W. J. Dippel, Charles B. L. M. Majoie, Aad van der Lugt, Robin Lemmens, Paul Suetens
CT Perfusion (CTP) imaging has gained importance in the diagnosis of acute stroke.
no code implementations • 11 Oct 2018 • David Robben, Paul Suetens
Perfusion imaging plays a crucial role in acute stroke diagnosis and treatment decision making.