no code implementations • COLING 2022 • Liang Wen, Juan Li, Houfeng Wang, Yingwei Luo, Xiaolin Wang, Xiaodong Zhang, Zhicong Cheng, Dawei Yin
And their experiments show that leveraging the answer summaries helps to attend the essential information in original lengthy answers and improve the answer selection performance under certain circumstances.
no code implementations • 25 Sep 2024 • Yuchen Li, Haoyi Xiong, Linghe Kong, Zeyi Sun, Hongyang Chen, Shuaiqiang Wang, Dawei Yin
Both Transformer and Graph Neural Networks (GNNs) have been employed in the domain of learning to rank (LTR).
no code implementations • 25 Sep 2024 • Yuchen Li, Haoyi Xiong, Linghe Kong, Jiang Bian, Shuaiqiang Wang, Guihai Chen, Dawei Yin
Learning to rank (LTR) is widely employed in web searches to prioritize pertinent webpages from retrieved content based on input queries.
no code implementations • 18 Sep 2024 • Jiongnan Liu, Yutao Zhu, Shuting Wang, Xiaochi Wei, Erxue Min, Yu Lu, Shuaiqiang Wang, Dawei Yin, Zhicheng Dou
By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their own parameters.
no code implementations • 17 Sep 2024 • Wonduk Seo, Haojie Zhang, Yueyang Zhang, Changhao Zhang, Songyao Duan, Lixin Su, Daiting Shi, Jiashu Zhao, Dawei Yin
Query reformulation is a well-known problem in Information Retrieval (IR) aimed at enhancing single search successful completion rate by automatically modifying user's input query.
1 code implementation • 16 Aug 2024 • Zhonghang Li, Long Xia, Lei Shi, Yong Xu, Dawei Yin, Chao Huang
Accurate traffic forecasting is crucial for effective urban planning and transportation management, enabling efficient resource allocation and enhanced travel experiences.
no code implementations • 15 Aug 2024 • Xihong Yang, Heming Jing, Zixing Zhang, Jindong Wang, Huakang Niu, Shuaiqiang Wang, Yu Lu, Junfeng Wang, Dawei Yin, Xinwang Liu, En Zhu, Defu Lian, Erxue Min
In this work, we prove that directly aligning the representations of LLMs and collaborative models is sub-optimal for enhancing downstream recommendation tasks performance, based on the information theorem.
1 code implementation • 9 Jul 2024 • Fanyue Wei, Wei Zeng, Zhenyang Li, Dawei Yin, Lixin Duan, Wen Li
Personalized text-to-image models allow users to generate varied styles of images (specified with a sentence) for an object (specified with a set of reference images).
1 code implementation • 8 Jul 2024 • Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo, Yewen Pu, Dawei Yin, Xing Hu, Yunji Chen
Recent advancements in open-source code large language models (LLMs) have demonstrated remarkable coding abilities by fine-tuning on the data generated from powerful closed-source LLMs such as GPT-3. 5 and GPT-4 for instruction tuning.
no code implementations • 28 Jun 2024 • Haoyi Xiong, Jiang Bian, Yuchen Li, Xuhong LI, Mengnan Du, Shuaiqiang Wang, Dawei Yin, Sumi Helal
Combining Large Language Models (LLMs) with search engine services marks a significant shift in the field of services computing, opening up new possibilities to enhance how we search for and retrieve information, understand content, and interact with internet services.
no code implementations • 25 Jun 2024 • Xin Yang, Heng Chang, Zhijian Lai, Jinze Yang, Xingrun Li, Yu Lu, Shuaiqiang Wang, Dawei Yin, Erxue Min
Cross-Domain Recommendation (CDR) seeks to utilize knowledge from different domains to alleviate the problem of data sparsity in the target recommendation domain, and it has been gaining more attention in recent years.
no code implementations • 17 Jun 2024 • Wanli Yang, Fei Sun, Jiajun Tan, Xinyu Ma, Du Su, Dawei Yin, HuaWei Shen
Despite significant progress in model editing methods, their application in real-world scenarios remains challenging as they often cause large language models (LLMs) to collapse.
1 code implementation • 17 Jun 2024 • Yiqun Chen, Qi Liu, Yi Zhang, Weiwei Sun, Daiting Shi, Jiaxin Mao, Dawei Yin
However, several significant challenges still persist in LLMs for ranking: (1) LLMs are constrained by limited input length, precluding them from processing a large number of documents simultaneously; (2) The output document sequence is influenced by the input order of documents, resulting in inconsistent ranking outcomes; (3) Achieving a balance between cost and ranking performance is quite challenging.
no code implementations • 28 May 2024 • Junda Zhu, Lingyong Yan, Haibo Shi, Dawei Yin, Lei Sha
The ATM steers the Generator to have a robust perspective of useful documents for question answering with the help of an auxiliary Attacker agent.
1 code implementation • 28 May 2024 • Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, Ji-Rong Wen
In this survey, we focus on reviewing existing literature from the two primary aspects (1) why tool learning is beneficial and (2) how tool learning is implemented, enabling a comprehensive understanding of tool learning with LLMs.
no code implementations • 26 May 2024 • Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Zhumin Chen, Suzan Verberne, Zhaochun Ren
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks.
1 code implementation • 25 May 2024 • Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, Ji-Rong Wen
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions, frequently leading to the retrieval of redundant, similar tools.
Ranked #1 on Retrieval on ToolLens
no code implementations • 23 May 2024 • Pengyue Jia, Yiding Liu, Xiaopeng Li, Xiangyu Zhao, Yuhao Wang, Yantong Du, Xiao Han, Xuetao Wei, Shuaiqiang Wang, Dawei Yin
Worldwide geolocalization aims to locate the precise location at the coordinate level of photos taken anywhere on the Earth.
1 code implementation • 10 May 2024 • Xubin Ren, Jiabin Tang, Dawei Yin, Nitesh Chawla, Chao Huang
This survey aims to serve as a valuable resource for researchers and practitioners eager to leverage large language models in graph learning, and to inspire continued progress in this dynamic field.
no code implementations • 10 May 2024 • Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, Qing Li
Given the powerful abilities of RAG in providing the latest and helpful auxiliary information, Retrieval-Augmented Large Language Models (RA-LLMs) have emerged to harness external and authoritative knowledge bases, rather than solely relying on the model's internal knowledge, to augment the generation quality of LLMs.
no code implementations • 6 May 2024 • Wenjie Zhou, Zhenxin Ding, Xiaodong Zhang, Haibo Shi, Junfeng Wang, Dawei Yin
Pre-trained language models have become an integral component of question-answering systems, achieving remarkable performance.
no code implementations • 1 May 2024 • Guanying Jiang, Lingyong Yan, Haibo Shi, Dawei Yin
Large language model alignment is widely used and studied to avoid LLM producing unhelpful and harmful responses.
no code implementations • 23 Apr 2024 • Wenqi Fan, Shijie Wang, Jiani Huang, Zhikai Chen, Yu Song, Wenzhuo Tang, Haitao Mao, Hui Liu, Xiaorui Liu, Dawei Yin, Qing Li
Meanwhile, graphs, especially knowledge graphs, are rich in reliable factual knowledge, which can be utilized to enhance the reasoning capabilities of LLMs and potentially alleviate their limitations such as hallucinations and the lack of explainability.
no code implementations • 8 Apr 2024 • Xuanfan Ni, Hengyi Cai, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin, Piji Li
However, prior benchmarks create datasets that ostensibly cater to long-text comprehension by expanding the input of traditional tasks, which falls short to exhibit the unique characteristics of long-text understanding, including long dependency tasks and longer text length compatible with modern LLMs' context window size.
no code implementations • 26 Mar 2024 • Yiqun Chen, Jiaxin Mao, Yi Zhang, Dehong Ma, Long Xia, Jun Fan, Daiting Shi, Zhicong Cheng, Simiu Gu, Dawei Yin
The objective of search result diversification (SRD) is to ensure that selected documents cover as many different subtopics as possible.
no code implementations • 21 Mar 2024 • Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Shuaiqiang Wang, Chong Meng, Zhicong Cheng, Zhaochun Ren, Dawei Yin
The training process is accomplished by self-rewards inferred from the trained model at the first stage without referring to external human preference resources.
1 code implementation • 5 Mar 2024 • Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren, Suzan Verberne, Zhaochun Ren
To mitigate these problems, we propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
2 code implementations • 25 Feb 2024 • Zhonghang Li, Lianghao Xia, Jiabin Tang, Yong Xu, Lei Shi, Long Xia, Dawei Yin, Chao Huang
These findings highlight the potential of building large language models for spatio-temporal learning, particularly in zero-shot scenarios where labeled data is scarce.
1 code implementation • 25 Feb 2024 • Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia, Dawei Yin, Chao Huang
However, existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets.
1 code implementation • 23 Feb 2024 • Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing, Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang, Dawei Yin, Yi Chang, Jiliang Tang
In this work, we conduct extensive empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
2 code implementations • 17 Feb 2024 • Yougang Lyu, Lingyong Yan, Shuaiqiang Wang, Haibo Shi, Dawei Yin, Pengjie Ren, Zhumin Chen, Maarten de Rijke, Zhaochun Ren
To address these problems, we propose a knowledge-aware fine-tuning (KnowTuning) method to improve fine-grained and coarse-grained knowledge awareness of LLMs.
1 code implementation • 15 Feb 2024 • Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin, Xueqi Cheng
In this work, we reveal a critical phenomenon: even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
1 code implementation • 12 Feb 2024 • Dongsheng Zhu, Xunzhu Tang, Weidong Han, Jinghui Lu, Yukun Zhao, Guoliang Xing, Junfeng Wang, Dawei Yin
This paper presents VisLingInstruct, a novel approach to advancing Multi-Modal Language Models (MMLMs) in zero-shot learning.
no code implementations • 6 Jan 2024 • Qian Li, Lixin Su, Jiashu Zhao, Long Xia, Hengyi Cai, Suqi Cheng, Hengzhu Tang, Junfeng Wang, Dawei Yin
Compared to conventional textual retrieval, the main obstacle for text-video retrieval is the semantic gap between the textual nature of queries and the visual richness of video content.
no code implementations • 24 Dec 2023 • Xiaopeng Li, Lixin Su, Pengyue Jia, Xiangyu Zhao, Suqi Cheng, Junfeng Wang, Dawei Yin
To be specific, we use Chain of Thought (CoT) technology to utilize Large Language Models (LLMs) as agents to emulate various demographic profiles, then use them for efficient query rewriting, and we innovate a robust Multi-gate Mixture of Experts (MMoE) architecture coupled with a hybrid loss function, collectively strengthening the ranking models' robustness.
no code implementations • 14 Dec 2023 • Hao Sun, Hengyi Cai, Bo wang, Yingyan Hou, Xiaochi Wei, Shuaiqiang Wang, Yan Zhang, Dawei Yin
Despite the remarkable ability of large language models (LLMs) in language comprehension and generation, they often suffer from producing factually incorrect information, also known as hallucination.
1 code implementation • 2 Nov 2023 • Weiwei Sun, Zheng Chen, Xinyu Ma, Lingyong Yan, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, Zhaochun Ren
Furthermore, our approach surpasses the performance of existing supervised methods like monoT5 and is on par with the state-of-the-art zero-shot methods.
1 code implementation • 1 Nov 2023 • Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, Chao Huang
By employing these strategies, we address the challenges posed by sparse implicit feedback and low-quality side information in recommenders.
1 code implementation • 29 Oct 2023 • Pengyue Jia, Yiding Liu, Xiangyu Zhao, Xiaopeng Li, Changying Hao, Shuaiqiang Wang, Dawei Yin
While existing methods expand queries using retrieved or generated contextual documents, each approach has notable limitations.
1 code implementation • 28 Oct 2023 • Xiangyu Zhao, Maolin Wang, Xinjian Zhao, Jiansheng Li, Shucheng Zhou, Dawei Yin, Qing Li, Jiliang Tang, Ruocheng Guo
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
no code implementations • 27 Oct 2023 • Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Chong Meng, Shuaiqiang Wang, Zhicong Cheng, Zhaochun Ren, Dawei Yin
In this paper, we propose a novel self-detection method to detect which questions that a LLM does not know that are prone to generate nonfactual results.
1 code implementation • 26 Oct 2023 • Qingqing Ge, Zeyuan Zhao, Yiding Liu, Anfeng Cheng, Xiang Li, Shuaiqiang Wang, Dawei Yin
In particular, PSP 1) employs a dual-view contrastive learning to align the latent semantic spaces of node attributes and graph structure, and 2) incorporates structure information in prompted graph to construct more accurate prototype vectors and elicit more pre-trained knowledge in prompt tuning.
no code implementations • 25 Oct 2023 • Yukun Zhao, Lingyong Yan, Weiwei Sun, Chong Meng, Shuaiqiang Wang, Zhicong Cheng, Zhaochun Ren, Dawei Yin
Dialogue assessment plays a critical role in the development of open-domain dialogue systems.
1 code implementation • 24 Oct 2023 • Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, Chao Huang
RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals through a cross-view alignment framework.
1 code implementation • 19 Oct 2023 • Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, Chao Huang
The open-sourced model implementation of our GraphGPT is available at https://github. com/HKUDS/GraphGPT.
no code implementations • 10 Oct 2023 • Shenglai Zeng, Yaxin Li, Jie Ren, Yiding Liu, Han Xu, Pengfei He, Yue Xing, Shuaiqiang Wang, Jiliang Tang, Dawei Yin
In this work, we conduct the first comprehensive analysis to explore language models' (LMs) memorization during fine-tuning across tasks.
no code implementations • 29 Sep 2023 • Qian Dong, Yiding Liu, Qingyao Ai, Zhijing Wu, Haitao Li, Yiqun Liu, Shuaiqiang Wang, Dawei Yin, Shaoping Ma
Large language models (LLMs) have demonstrated remarkable capabilities across various research domains, including the field of Information Retrieval (IR).
no code implementations • 2 Sep 2023 • Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Mengnan Du
For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge.
no code implementations • 19 Jul 2023 • Qingyao Ai, Ting Bai, Zhao Cao, Yi Chang, Jiawei Chen, Zhumin Chen, Zhiyong Cheng, Shoubin Dong, Zhicheng Dou, Fuli Feng, Shen Gao, Jiafeng Guo, Xiangnan He, Yanyan Lan, Chenliang Li, Yiqun Liu, Ziyu Lyu, Weizhi Ma, Jun Ma, Zhaochun Ren, Pengjie Ren, Zhiqiang Wang, Mingwen Wang, Ji-Rong Wen, Le Wu, Xin Xin, Jun Xu, Dawei Yin, Peng Zhang, Fan Zhang, Weinan Zhang, Min Zhang, Xiaofei Zhu
The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs.
2 code implementations • 7 Jul 2023 • Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin, Wenqi Fan, Hui Liu, Jiliang Tang
The most popular pipeline for learning on graphs with textual node attributes primarily relies on Graph Neural Networks (GNNs), and utilizes shallow text embedding as initial node representations, which has limitations in general knowledge and profound semantic understanding.
1 code implementation • NeurIPS 2023 • Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, Dawei Yin
Furthermore, new and diverse datasets have also been created to better evaluate the effectiveness of these new models.
1 code implementation • 4 Jun 2023 • Qian Dong, Yiding Liu, Qingyao Ai, Haitao Li, Shuaiqiang Wang, Yiqun Liu, Dawei Yin, Shaoping Ma
Moreover, the proposed implicit interaction is compatible with special pre-training and knowledge distillation for passage retrieval, which brings a new state-of-the-art performance.
no code implementations • 2 Jun 2023 • Canjia Li, Xiaoyang Wang, Dongdong Li, Yiding Liu, Yu Lu, Shuaiqiang Wang, Zhicong Cheng, Simiu Gu, Dawei Yin
In this work, we focus on ranking user satisfaction rather than relevance in web search, and propose a PLM-based framework, namely SAT-Ranker, which comprehensively models different dimensions of user satisfaction in a unified manner.
no code implementations • 24 May 2023 • Yubao Tang, Ruqing Zhang, Jiafeng Guo, Jiangui Chen, Zuowei Zhu, Shuaiqiang Wang, Dawei Yin, Xueqi Cheng
Specifically, we assign each document an Elaborative Description based on the query generation technique, which is more meaningful than a string of integers in the original DSI; and (2) For the associations between a document and its identifier, we take inspiration from Rehearsal Strategies in human learning.
no code implementations • 17 May 2023 • Dan Luo, Lixin Zou, Qingyao Ai, Zhiyu Chen, Chenliang Li, Dawei Yin, Brian D. Davison
The goal of unbiased learning to rank (ULTR) is to leverage implicit user feedback for optimizing learning-to-rank systems.
no code implementations • 16 May 2023 • Bo wang, Heyan Huang, Xiaochi Wei, Ge Shi, Xiao Liu, Chong Feng, Tong Zhou, Shuaiqiang Wang, Dawei Yin
Event extraction aims to recognize pre-defined event triggers and arguments from texts, which suffer from the lack of high-quality annotations.
1 code implementation • 4 May 2023 • Xubin Ren, Lianghao Xia, Jiashu Zhao, Dawei Yin, Chao Huang
Recent studies show that graph neural networks (GNNs) are prevalent to model high-order relationships for collaborative filtering (CF).
1 code implementation • 19 Apr 2023 • Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, Zhaochun Ren
In this paper, we first investigate generative LLMs such as ChatGPT and GPT-4 for relevance ranking in IR.
1 code implementation • 11 Mar 2023 • Kesen Zhao, Lixin Zou, Xiangyu Zhao, Maolin Wang, Dawei Yin
However, deploying the DT in recommendation is a non-trivial problem because of the following challenges: (1) deficiency in modeling the numerical reward value; (2) data discrepancy between the policy learning and recommendation generation; (3) unreliable offline performance evaluation.
no code implementations • 28 Jan 2023 • Anfeng Cheng, Yiding Liu, Weibin Li, Qian Dong, Shuaiqiang Wang, Zhengjie Huang, Shikun Feng, Zhicong Cheng, Dawei Yin
To assess webpage quality from complex DOM tree data, we propose a graph neural network (GNN) based method that extracts rich layout-aware information that implies webpage quality in an end-to-end manner.
1 code implementation • 11 Dec 2022 • Yougang Lyu, Piji Li, Yechang Yang, Maarten de Rijke, Pengjie Ren, Yukun Zhao, Dawei Yin, Zhaochun Ren
We also propose a dynamic negative sampling strategy to capture the dynamic influence of biases by employing a bias-only model to dynamically select the most similar biased negative samples.
no code implementations • 11 Nov 2022 • Lianshang Cai, Linhao Zhang, Dehong Ma, Jun Fan, Daiting Shi, Yi Wu, Zhicong Cheng, Simiu Gu, Dawei Yin
In this paper, we focus on two key questions in knowledge distillation for ranking models: 1) how to ensemble knowledge from multi-teacher; 2) how to utilize the label information of data in the distillation process.
no code implementations • 19 Oct 2022 • Haitao Mao, Lixin Zou, Yujia Zheng, Jiliang Tang, Xiaokai Chu, Jiashu Zhao, Qian Wang, Dawei Yin
To address the above challenges, we propose a Bias Agnostic whole-page unbiased Learning to rank algorithm, named BAL, to automatically find the user behavior model with causal discovery and mitigate the biases induced by multiple SERP features with no specific design.
no code implementations • 18 Oct 2022 • Wenbiao Li, Pan Tang, Zhengfan Wu, Weixue Lu, Minghua Zhang, Zhenlei Tian, Daiting Shi, Yu Sun, Simiu Gu, Dawei Yin
Meanwhile, we introduce sentence-level semantic interaction to design a multi-embedding-based retrieval (MEBR) model, which can generate multiple embeddings to deal with different potential queries by using frequently clicked sentences in web pages.
no code implementations • 16 Aug 2022 • Lixin Zou, Changying Hao, Hengyi Cai, Suqi Cheng, Shuaiqiang Wang, Wenwen Ye, Zhicong Cheng, Simiu Gu, Dawei Yin
We further instantiate the proposed unbiased relevance estimation framework in Baidu search, with comprehensive practical solutions designed regarding the data pipeline for click behavior tracking and online relevance estimation with an approximated deep neural network.
1 code implementation • 24 Jul 2022 • Dan Luo, Lixin Zou, Qingyao Ai, Zhiyu Chen, Dawei Yin, Brian D. Davison
Existing methods in unbiased learning to rank typically rely on click modeling or inverse propensity weighting (IPW).
no code implementations • 14 Jul 2022 • Boming Zhao, Bangbang Yang, Zhenyang Li, Zuoyue Li, Guofeng Zhang, Jiashu Zhao, Dawei Yin, Zhaopeng Cui, Hujun Bao
Expanding an existing tourist photo from a partially captured scene to a full scene is one of the desired experiences for photography applications.
1 code implementation • 7 Jul 2022 • Lixin Zou, Haitao Mao, Xiaokai Chu, Jiliang Tang, Wenwen Ye, Shuaiqiang Wang, Dawei Yin
The unbiased learning to rank (ULTR) problem has been greatly advanced by recent deep learning techniques and well-designed debias algorithms.
1 code implementation • 25 Jun 2022 • Shichao Zhu, Chuan Zhou, Anfeng Cheng, Shirui Pan, Shuaiqiang Wang, Dawei Yin, Bin Wang
Self-supervised learning (especially contrastive learning) methods on heterogeneous graphs can effectively get rid of the dependence on supervisory data.
1 code implementation • 21 May 2022 • Juanhui Li, Harry Shomer, Jiayuan Ding, Yiqi Wang, Yao Ma, Neil Shah, Jiliang Tang, Dawei Yin
This suggests a conflation of scoring function design, loss function design, and MP in prior work, with promising insights regarding the scalability of state-of-the-art KGC methods today, as well as careful attention to more suitable MP designs for KGC tasks tomorrow.
no code implementations • 20 May 2022 • Qingzhong Wang, Haifang Li, Haoyi Xiong, Wen Wang, Jiang Bian, Yu Lu, Shuaiqiang Wang, Zhicong Cheng, Dejing Dou, Dawei Yin
To handle the diverse query requests from users at web-scale, Baidu has done tremendous efforts in understanding users' queries, retrieve relevant contents from a pool of trillions of webpages, and rank the most relevant webpages on the top of results.
no code implementations • 18 May 2022 • Yuxiang Lu, Yiding Liu, Jiaxiang Liu, Yunsheng Shi, Zhengjie Huang, Shikun Feng Yu Sun, Hao Tian, Hua Wu, Shuaiqiang Wang, Dawei Yin, Haifeng Wang
Our method 1) introduces a self on-the-fly distillation method that can effectively distill late interaction (i. e., ColBERT) to vanilla dual-encoder, and 2) incorporates a cascade distillation process to further improve the performance with a cross-encoder teacher.
1 code implementation • 26 Apr 2022 • Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, Jimmy Xiangji Huang
Additionally, our HCCF model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems, based on the hypergraph-enhanced self-discrimination.
no code implementations • 25 Apr 2022 • Qian Dong, Yiding Liu, Suqi Cheng, Shuaiqiang Wang, Zhicong Cheng, Shuzi Niu, Dawei Yin
To leverage a reliable knowledge, we propose a novel knowledge graph distillation method and obtain a knowledge meta graph as the bridge between query and passage.
no code implementations • 3 Apr 2022 • Juanhui Li, Yao Ma, Wei Zeng, Suqi Cheng, Jiliang Tang, Shuaiqiang Wang, Dawei Yin
In other words, GE-BERT can capture both the semantic information and the users' search behavioral information of queries.
no code implementations • 31 Mar 2022 • Weiqi Shao, Xu Chen, Long Xia, Jiashu Zhao, Dawei Yin
To solve this problem, in this paper, we propose a novel sequential recommender model via decomposing and modeling user independent preferences.
1 code implementation • 17 Feb 2022 • Wei Wei, Chao Huang, Lianghao Xia, Yong Xu, Jiashu Zhao, Dawei Yin
In addition, to capture the diverse multi-behavior patterns, we design a contrastive meta network to encode the customized behavior heterogeneity for different users.
no code implementations • 6 Dec 2021 • Weiqi Shao, Xu Chen, Jiashu Zhao, Long Xia, Dawei Yin
We propose a sequential model with dynamic number of representations for recommendation systems (RDRSR).
no code implementations • 6 Dec 2021 • Weiqi Shao, Xu Chen, Jiashu Zhao, Long Xia, Dawei Yin
It is necessary to learn a dynamic group of representations according the item groups in a user historical behavior.
1 code implementation • 8 Oct 2021 • Huance Xu, Chao Huang, Yong Xu, Lianghao Xia, Hao Xing, Dawei Yin
Social recommendation which aims to leverage social connections among users to enhance the recommendation performance.
no code implementations • Findings (ACL) 2022 • Lan Jiang, Tianshu Lyu, Yankai Lin, Meng Chong, Xiaoyong Lyu, Dawei Yin
To determine whether TM models have adopted such heuristic, we introduce an adversarial evaluation scheme which invalidates the heuristic.
no code implementations • CCL 2021 • Xin Jia, Hao Wang, Dawei Yin, Yunfang Wu
Question generation (QG) is to generate natural and grammatical questions that can be answered by a specific answer for a given context.
no code implementations • 7 Jun 2021 • Yiding Liu, Guan Huang, Jiaxiang Liu, Weixue Lu, Suqi Cheng, Yukun Li, Daiting Shi, Shuaiqiang Wang, Zhicong Cheng, Dawei Yin
More importantly, we present a practical system workflow for deploying the model in web-scale retrieval.
1 code implementation • 28 May 2021 • Siyuan Guo, Lixin Zou, Yiding Liu, Wenwen Ye, Suqi Cheng, Shuaiqiang Wang, Hechang Chen, Dawei Yin, Yi Chang
Based on it, a more robust doubly robust (MRDR) estimator has been proposed to further reduce its variance while retaining its double robustness.
no code implementations • 24 May 2021 • Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Daiting Shi, Zhifan Zhu, Weiyue Su, Shuaiqiang Wang, Zhicong Cheng, Dawei Yin
However, it is nontrivial to directly apply these PLM-based rankers to the large-scale web search system due to the following challenging issues:(1) the prohibitively expensive computations of massive neural PLMs, especially for long texts in the web-document, prohibit their deployments in an online ranking system that demands extremely low latency;(2) the discrepancy between existing ranking-agnostic pre-training objectives and the ad-hoc retrieval scenarios that demand comprehensive relevance modeling is another main barrier for improving the online ranking system;(3) a real-world search engine typically involves a committee of ranking components, and thus the compatibility of the individually fine-tuned ranking model is critical for a cooperative ranking system.
no code implementations • 4 May 2021 • Lixin Zou, Long Xia, Linfang Hou, Xiangyu Zhao, Dawei Yin
This work introduces a practical, data-efficient policy learning method, named Variance-Bonus Monte Carlo Tree Search~(VB-MCTS), which can copy with very little data and facilitate learning from scratch in only a few trials.
no code implementations • 17 Feb 2021 • Lianzhe Huang, Peiyi Wang, Sujian Li, Tianyu Liu, Xiaodong Zhang, Zhicong Cheng, Dawei Yin, Houfeng Wang
Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from a sentence, including target entities, associated sentiment polarities, and opinion spans which rationalize the polarities.
Ranked #9 on Aspect Sentiment Triplet Extraction on ASTE-Data-V2
no code implementations • 16 Feb 2021 • Haolan Zhan, Hainan Zhang, Hongshen Chen, Lei Shen, Yanyan Lan, Zhuoye Ding, Dawei Yin
A simple and effective way is to extract keywords directly from the knowledge-base of products, i. e., attributes or title, as the recommendation reason.
no code implementations • 12 Feb 2021 • Gang Wang, Ziyi Guo, Xiang Li, Dawei Yin, Shuai Ma
Collaborative filtering has been largely used to advance modern recommender systems to predict user preference.
no code implementations • 27 Sep 2020 • Hainan Zhang, Yanyan Lan, Liang Pang, Hongshen Chen, Zhuoye Ding, Dawei Yin
Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appropriate responses accordingly.
1 code implementation • 4 Jul 2020 • Lixin Zou, Long Xia, Yulong Gu, Xiangyu Zhao, Weidong Liu, Jimmy Xiangji Huang, Dawei Yin
Therefore, the proposed exploration policy, to balance between learning the user profile and making accurate recommendations, can be directly optimized by maximizing users' long-term satisfaction with reinforcement learning.
1 code implementation • 8 Jun 2020 • Xiang Li, Ben Kao, Caihua Shan, Dawei Yin, Martin Ester
We study the problem of applying spectral clustering to cluster multi-scale data, which is data whose clusters are of various sizes and densities.
no code implementations • 1 Jun 2020 • Linfang Hou, Liang Pang, Xin Hong, Yanyan Lan, Zhi-Ming Ma, Dawei Yin
Robust Reinforcement Learning aims to find the optimal policy with some extent of robustness to environmental dynamics.
no code implementations • ACL 2020 • Hengyi Cai, Hongshen Chen, Yonghao Song, Cheng Zhang, Xiaofang Zhao, Dawei Yin
In this paper, we propose a data manipulation framework to proactively reshape the data distribution towards reliable samples by augmenting and highlighting effective learning samples as well as reducing the effect of inefficient samples simultaneously.
no code implementations • 4 Mar 2020 • Shaoxiong Feng, Hongshen Chen, Kan Li, Dawei Yin
Neural conversational models learn to generate responses by taking into account the dialog history.
1 code implementation • 2 Mar 2020 • Hengyi Cai, Hongshen Chen, Cheng Zhang, Yonghao Song, Xiaofang Zhao, Yangxi Li, Dongsheng Duan, Dawei Yin
Current state-of-the-art neural dialogue systems are mainly data-driven and are trained on human-generated responses.
1 code implementation • IJCNLP 2019 • Hengyi Cai, Hongshen Chen, Cheng Zhang, Yonghao Song, Xiaofang Zhao, Dawei Yin
For each conversation, the model generates parameters of the encoder-decoder by referring to the input context.
2 code implementations • 17 Jan 2020 • Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, Yi Chang
In this paper, we propose GraphLIME, a local interpretable model explanation for graphs using the Hilbert-Schmidt Independence Criterion (HSIC) Lasso, which is a nonlinear feature selection method.
no code implementations • IJCNLP 2019 • Junjie Li, Xuepeng Wang, Dawei Yin, Cheng-qing Zong
Review summarization aims to generate a condensed summary for a review or multiple reviews.
no code implementations • 23 Jul 2019 • Li He, Long Xia, Wei Zeng, Zhi-Ming Ma, Yihong Zhao, Dawei Yin
To make full use of such historical data, learning policies from multiple loggers becomes necessary.
no code implementations • 16 Jul 2019 • Wenqi Fan, Yao Ma, Dawei Yin, Jian-Ping Wang, Jiliang Tang, Qing Li
Meanwhile, most of these models treat neighbors' information equally without considering the specific recommendations.
no code implementations • 27 Jun 2019 • Xiangyu Zhao, Long Xia, Lixin Zou, Dawei Yin, Jiliang Tang
Thus, it calls for a user simulator that can mimic real users' behaviors where we can pre-train and evaluate new recommendation algorithms.
8 code implementations • 19 Feb 2019 • Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin
These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key.
Ranked #3 on Recommendation Systems on Epinions (using extra training data)
no code implementations • 13 Feb 2019 • Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin
Though reinforcement learning~(RL) naturally fits the problem of maximizing the long term rewards, applying RL to optimize long-term user engagement is still facing challenges: user behaviors are versatile and difficult to model, which typically consists of both instant feedback~(e. g. clicks, ordering) and delayed feedback~(e. g. dwell time, revisit); in addition, performing effective off-policy learning is still immature, especially when combining bootstrapping and function approximation.
no code implementations • 11 Feb 2019 • Xiangyu Zhao, Long Xia, Linxin Zou, Hui Liu, Dawei Yin, Jiliang Tang
With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in developing RL-based recommender systems.
Multi-agent Reinforcement Learning Recommendation Systems +2
1 code implementation • 23 Jan 2019 • Shen Gao, Zhaochun Ren, Yihong Eric Zhao, Dongyan Zhao, Dawei Yin, Rui Yan
In this paper, we propose the task of product-aware answer generation, which tends to generate an accurate and complete answer from large-scale unlabeled e-commerce reviews and product attributes.
Ranked #1 on Question Answering on JD Product Question Answer
no code implementations • 18 Dec 2018 • Xiangyu Zhao, Long Xia, Jiliang Tang, Dawei Yin
Search, recommendation, and online advertising are the three most important information-providing mechanisms on the web.
2 code implementations • 24 Oct 2018 • Yao Ma, Ziyi Guo, Zhaochun Ren, Eric Zhao, Jiliang Tang, Dawei Yin
Current graph neural network models cannot utilize the dynamic information in dynamic graphs.
2 code implementations • 31 Aug 2018 • Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen Chen, Shangsong Liang, Yihong Zhao, Dawei Yin
However, the \emph{expensive nature of state labeling} and the \emph{weak interpretability} make the dialogue state tracking a challenging problem for both task-oriented and non-task-oriented dialogue generation: For generating responses in task-oriented dialogues, state tracking is usually learned from manually annotated corpora, where the human annotation is expensive for training; for generating responses in non-task-oriented dialogues, most of existing work neglects the explicit state tracking due to the unlimited number of dialogue states.
no code implementations • 19 Aug 2018 • Zhiwei Wang, Yao Ma, Dawei Yin, Jiliang Tang
Recurrent Neural Networks (RNNs) have been proven to be effective in modeling sequential data and they have been applied to boost a variety of tasks such as document classification, speech recognition and machine translation.
no code implementations • 18 Aug 2018 • Yao Ma, Suhang Wang, Charu C. Aggarwal, Dawei Yin, Jiliang Tang
Convolutional neural networks (CNNs) leverage the great power in representation learning on regular grid data such as image and video.
Social and Information Networks
1 code implementation • ACL 2018 • Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, Dawei Yin
Existing solutions to task-oriented dialogue systems follow pipeline designs which introduces architectural complexity and fragility.
1 code implementation • ACL 2018 • Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu, Dawei Yin
Our empirical study on a real-world dataset prove that our model is capable of generating meaningful, diverse and natural responses for both factoid-questions and knowledge grounded chi-chats.
no code implementations • 7 May 2018 • Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, Jiliang Tang
In particular, we propose a principled approach to jointly generate a set of complementary items and the corresponding strategy to display them in a 2-D page; and propose a novel page-wise recommendation framework based on deep reinforcement learning, DeepPage, which can optimize a page of items with proper display based on real-time feedback from users.
no code implementations • 19 Feb 2018 • Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, Dawei Yin
Users' feedback can be positive and negative and both types of feedback have great potentials to boost recommendations.
7 code implementations • 30 Dec 2017 • Xiangyu Zhao, Liang Zhang, Long Xia, Zhuoye Ding, Dawei Yin, Jiliang Tang
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services.
no code implementations • 6 Nov 2017 • Hongshen Chen, Xiaorui Liu, Dawei Yin, Jiliang Tang
Dialogue systems have attracted more and more attention.
no code implementations • 14 Aug 2016 • Makoto Yamada, Jiliang Tang, Jose Lugo-Martinez, Ermin Hodzic, Raunak Shrestha, Avishek Saha, Hua Ouyang, Dawei Yin, Hiroshi Mamitsuka, Cenk Sahinalp, Predrag Radivojac, Filippo Menczer, Yi Chang
However, sophisticated learning models are computationally unfeasible for data with millions of features.
no code implementations • 21 Jul 2016 • Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A. Hasegawa-Johnson, Thomas S. Huang
The increasing popularity of real-world recommender systems produces data continuously and rapidly, and it becomes more realistic to study recommender systems under streaming scenarios.
no code implementations • 5 Dec 2014 • Suriya Gunasekar, Makoto Yamada, Dawei Yin, Yi Chang
We address the collective matrix completion problem of jointly recovering a collection of matrices with shared structure from partial (and potentially noisy) observations.
no code implementations • 10 Nov 2014 • Makoto Yamada, Avishek Saha, Hua Ouyang, Dawei Yin, Yi Chang
We propose a feature selection method that finds non-redundant features from a large and high-dimensional data in nonlinear way.