Search Results for author: Dawei Yin

Found 70 papers, 24 papers with code

Original Content Is All You Need! an Empirical Study on Leveraging Answer Summary for WikiHowQA Answer Selection Task

no code implementations COLING 2022 Liang Wen, Juan Li, Houfeng Wang, Yingwei Luo, Xiaolin Wang, Xiaodong Zhang, Zhicong Cheng, Dawei Yin

And their experiments show that leveraging the answer summaries helps to attend the essential information in original lengthy answers and improve the answer selection performance under certain circumstances.

Answer Selection

Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies

no code implementations24 May 2023 Yubao Tang, Ruqing Zhang, Jiafeng Guo, Jiangui Chen, Zuowei Zhu, Shuaiqiang Wang, Dawei Yin, Xueqi Cheng

Specifically, we assign each document an Elaborative Description based on the query generation technique, which is more meaningful than a string of integers in the original DSI; and (2) For the associations between a document and its identifier, we take inspiration from Rehearsal Strategies in human learning.

Memorization Retrieval

Unconfounded Propensity Estimation for Unbiased Ranking

no code implementations17 May 2023 Dan Luo, Lixin Zou, Qingyao Ai, Zhiyu Chen, Chenliang Li, Dawei Yin, Brian D. Davison

The goal of unbiased learning to rank (ULTR) is to leverage implicit user feedback for optimizing learning-to-rank systems.

Learning-To-Rank

Boosting Event Extraction with Denoised Structure-to-Text Augmentation

no code implementations16 May 2023 Bo wang, Heyan Huang, Xiaochi Wei, Ge Shi, Xiao Liu, Chong Feng, Tong Zhou, Shuaiqiang Wang, Dawei Yin

Event extraction aims to recognize pre-defined event triggers and arguments from texts, which suffer from the lack of high-quality annotations.

Event Extraction Text Augmentation +1

Disentangled Contrastive Collaborative Filtering

1 code implementation4 May 2023 Xubin Ren, Lianghao Xia, Jiashu Zhao, Dawei Yin, Chao Huang

Recent studies show that graph neural networks (GNNs) are prevalent to model high-order relationships for collaborative filtering (CF).

Collaborative Filtering Contrastive Learning +1

Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agent

1 code implementation19 Apr 2023 Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, Dawei Yin, Zhaochun Ren

Large Language Models (LLMs) have demonstrated a remarkable ability to generalize zero-shot to various language-related tasks.

Information Retrieval Re-Ranking +1

Learning to Tokenize for Generative Retrieval

no code implementations9 Apr 2023 Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen, Dawei Yin, Maarten de Rijke, Zhaochun Ren

As an alternative, generative retrieval represents documents as identifiers (docid) and retrieves documents by generating docids, enabling end-to-end modeling of document retrieval tasks.

Retrieval

User Retention-oriented Recommendation with Decision Transformer

1 code implementation11 Mar 2023 Kesen Zhao, Lixin Zou, Xiangyu Zhao, Maolin Wang, Dawei Yin

However, deploying the DT in recommendation is a non-trivial problem because of the following challenges: (1) deficiency in modeling the numerical reward value; (2) data discrepancy between the policy learning and recommendation generation; (3) unreliable offline performance evaluation.

Contrastive Learning Reinforcement Learning (RL)

Layout-aware Webpage Quality Assessment

no code implementations28 Jan 2023 Anfeng Cheng, Yiding Liu, Weibin Li, Qian Dong, Shuaiqiang Wang, Zhengjie Huang, Shikun Feng, Zhicong Cheng, Dawei Yin

To assess webpage quality from complex DOM tree data, we propose a graph neural network (GNN) based method that extracts rich layout-aware information that implies webpage quality in an end-to-end manner.

Feature-Level Debiased Natural Language Understanding

1 code implementation11 Dec 2022 Yougang Lyu, Piji Li, Yechang Yang, Maarten de Rijke, Pengjie Ren, Yukun Zhao, Dawei Yin, Zhaochun Ren

We also propose a dynamic negative sampling strategy to capture the dynamic influence of biases by employing a bias-only model to dynamically select the most similar biased negative samples.

Contrastive Learning Natural Language Understanding

PILE: Pairwise Iterative Logits Ensemble for Multi-Teacher Labeled Distillation

no code implementations11 Nov 2022 Lianshang Cai, Linhao Zhang, Dehong Ma, Jun Fan, Daiting Shi, Yi Wu, Zhicong Cheng, Simiu Gu, Dawei Yin

In this paper, we focus on two key questions in knowledge distillation for ranking models: 1) how to ensemble knowledge from multi-teacher; 2) how to utilize the label information of data in the distillation process.

Knowledge Distillation

Whole Page Unbiased Learning to Rank

no code implementations19 Oct 2022 Haitao Mao, Lixin Zou, Yujia Zheng, Jiliang Tang, Xiaokai Chu, Jiashu Zhao, Dawei Yin

To address the above challenges, we propose a Bias Agnostic whole-page unbiased Learning to rank algorithm, BAL, to automatically discover and mitigate the biases from multiple SERP features with no specific design.

Information Retrieval Learning-To-Rank +1

CPS-MEBR: Click Feedback-Aware Web Page Summarization for Multi-Embedding-Based Retrieval

no code implementations18 Oct 2022 Wenbiao Li, Pan Tang, Zhengfan Wu, Weixue Lu, Minghua Zhang, Zhenlei Tian, Daiting Shi, Yu Sun, Simiu Gu, Dawei Yin

Meanwhile, we introduce sentence-level semantic interaction to design a multi-embedding-based retrieval (MEBR) model, which can generate multiple embeddings to deal with different potential queries by using frequently clicked sentences in web pages.

Retrieval

Approximated Doubly Robust Search Relevance Estimation

no code implementations16 Aug 2022 Lixin Zou, Changying Hao, Hengyi Cai, Suqi Cheng, Shuaiqiang Wang, Wenwen Ye, Zhicong Cheng, Simiu Gu, Dawei Yin

We further instantiate the proposed unbiased relevance estimation framework in Baidu search, with comprehensive practical solutions designed regarding the data pipeline for click behavior tracking and online relevance estimation with an approximated deep neural network.

Model-based Unbiased Learning to Rank

1 code implementation24 Jul 2022 Dan Luo, Lixin Zou, Qingyao Ai, Zhiyu Chen, Dawei Yin, Brian D. Davison

Existing methods in unbiased learning to rank typically rely on click modeling or inverse propensity weighting (IPW).

Information Retrieval Learning-To-Rank +1

Factorized and Controllable Neural Re-Rendering of Outdoor Scene for Photo Extrapolation

no code implementations14 Jul 2022 Boming Zhao, Bangbang Yang, Zhenyang Li, Zuoyue Li, Guofeng Zhang, Jiashu Zhao, Dawei Yin, Zhaopeng Cui, Hujun Bao

Expanding an existing tourist photo from a partially captured scene to a full scene is one of the desired experiences for photography applications.

A Large Scale Search Dataset for Unbiased Learning to Rank

1 code implementation7 Jul 2022 Lixin Zou, Haitao Mao, Xiaokai Chu, Jiliang Tang, Wenwen Ye, Shuaiqiang Wang, Dawei Yin

The unbiased learning to rank (ULTR) problem has been greatly advanced by recent deep learning techniques and well-designed debias algorithms.

Causal Discovery Language Modelling +3

Geometry Contrastive Learning on Heterogeneous Graphs

1 code implementation25 Jun 2022 Shichao Zhu, Chuan Zhou, Anfeng Cheng, Shirui Pan, Shuaiqiang Wang, Dawei Yin, Bin Wang

Self-supervised learning (especially contrastive learning) methods on heterogeneous graphs can effectively get rid of the dependence on supervisory data.

Contrastive Learning Node Classification +3

Are Graph Neural Networks Really Helpful for Knowledge Graph Completion?

1 code implementation21 May 2022 Juanhui Li, Harry Shomer, Jiayuan Ding, Yiqi Wang, Yao Ma, Neil Shah, Jiliang Tang, Dawei Yin

This suggests a conflation of scoring function design, loss function design, and aggregation in prior work, with promising insights regarding the scalability of state-of-the-art KGC methods today, as well as careful attention to more suitable aggregation designs for KGC tasks tomorrow.

A Simple yet Effective Framework for Active Learning to Rank

no code implementations20 May 2022 Qingzhong Wang, Haifang Li, Haoyi Xiong, Wen Wang, Jiang Bian, Yu Lu, Shuaiqiang Wang, Zhicong Cheng, Dejing Dou, Dawei Yin

To handle the diverse query requests from users at web-scale, Baidu has done tremendous efforts in understanding users' queries, retrieve relevant contents from a pool of trillions of webpages, and rank the most relevant webpages on the top of results.

Active Learning Learning-To-Rank

ERNIE-Search: Bridging Cross-Encoder with Dual-Encoder via Self On-the-fly Distillation for Dense Passage Retrieval

no code implementations18 May 2022 Yuxiang Lu, Yiding Liu, Jiaxiang Liu, Yunsheng Shi, Zhengjie Huang, Shikun Feng Yu Sun, Hao Tian, Hua Wu, Shuaiqiang Wang, Dawei Yin, Haifeng Wang

Our method 1) introduces a self on-the-fly distillation method that can effectively distill late interaction (i. e., ColBERT) to vanilla dual-encoder, and 2) incorporates a cascade distillation process to further improve the performance with a cross-encoder teacher.

Knowledge Distillation Open-Domain Question Answering +2

Hypergraph Contrastive Collaborative Filtering

1 code implementation26 Apr 2022 Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, Jimmy Xiangji Huang

Additionally, our HCCF model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems, based on the hypergraph-enhanced self-discrimination.

Collaborative Filtering Contrastive Learning +2

Incorporating Explicit Knowledge in Pre-trained Language Models for Passage Re-ranking

no code implementations25 Apr 2022 Qian Dong, Yiding Liu, Suqi Cheng, Shuaiqiang Wang, Zhicong Cheng, Shuzi Niu, Dawei Yin

To leverage a reliable knowledge, we propose a novel knowledge graph distillation method and obtain a knowledge meta graph as the bridge between query and passage.

Natural Language Understanding Passage Re-Ranking +2

Graph Enhanced BERT for Query Understanding

no code implementations3 Apr 2022 Juanhui Li, Yao Ma, Wei Zeng, Suqi Cheng, Jiliang Tang, Shuaiqiang Wang, Dawei Yin

In other words, GE-BERT can capture both the semantic information and the users' search behavioral information of queries.

Sequential Recommendation with User Evolving Preference Decomposition

no code implementations31 Mar 2022 Weiqi Shao, Xu Chen, Long Xia, Jiashu Zhao, Dawei Yin

To solve this problem, in this paper, we propose a novel sequential recommender model via decomposing and modeling user independent preferences.

Sequential Recommendation

Contrastive Meta Learning with Behavior Multiplicity for Recommendation

1 code implementation17 Feb 2022 Wei Wei, Chao Huang, Lianghao Xia, Yong Xu, Jiashu Zhao, Dawei Yin

In addition, to capture the diverse multi-behavior patterns, we design a contrastive meta network to encode the customized behavior heterogeneity for different users.

Contrastive Learning Meta-Learning

Gumble Softmax For User Behavior Modeling

no code implementations6 Dec 2021 Weiqi Shao, Xu Chen, Jiashu Zhao, Long Xia, Dawei Yin

We propose a sequential model with dynamic number of representations for recommendation systems (RDRSR).

Sequential Recommendation

User behavior understanding in real world settings

no code implementations6 Dec 2021 Weiqi Shao, Xu Chen, Jiashu Zhao, Long Xia, Dawei Yin

It is necessary to learn a dynamic group of representations according the item groups in a user historical behavior.

Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

1 code implementation8 Oct 2021 Huance Xu, Chao Huang, Yong Xu, Lianghao Xia, Hao Xing, Dawei Yin

Social recommendation which aims to leverage social connections among users to enhance the recommendation performance.

Recommendation Systems

On Length Divergence Bias in Textual Matching Models

no code implementations Findings (ACL) 2022 Lan Jiang, Tianshu Lyu, Yankai Lin, Meng Chong, Xiaoyong Lyu, Dawei Yin

To determine whether TM models have adopted such heuristic, we introduce an adversarial evaluation scheme which invalidates the heuristic.

Semantic Similarity Semantic Textual Similarity

Enhancing Question Generation with Commonsense Knowledge

no code implementations CCL 2021 Xin Jia, Hao Wang, Dawei Yin, Yunfang Wu

Question generation (QG) is to generate natural and grammatical questions that can be answered by a specific answer for a given context.

Multi-Task Learning Question Generation +2

Enhanced Doubly Robust Learning for Debiasing Post-click Conversion Rate Estimation

1 code implementation28 May 2021 Siyuan Guo, Lixin Zou, Yiding Liu, Wenwen Ye, Suqi Cheng, Shuaiqiang Wang, Hechang Chen, Dawei Yin, Yi Chang

Based on it, a more robust doubly robust (MRDR) estimator has been proposed to further reduce its variance while retaining its double robustness.

Imputation Recommendation Systems +1

Pre-trained Language Model based Ranking in Baidu Search

no code implementations24 May 2021 Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Daiting Shi, Zhifan Zhu, Weiyue Su, Shuaiqiang Wang, Zhicong Cheng, Dawei Yin

However, it is nontrivial to directly apply these PLM-based rankers to the large-scale web search system due to the following challenging issues:(1) the prohibitively expensive computations of massive neural PLMs, especially for long texts in the web-document, prohibit their deployments in an online ranking system that demands extremely low latency;(2) the discrepancy between existing ranking-agnostic pre-training objectives and the ad-hoc retrieval scenarios that demand comprehensive relevance modeling is another main barrier for improving the online ranking system;(3) a real-world search engine typically involves a committee of ranking components, and thus the compatibility of the individually fine-tuned ranking model is critical for a cooperative ranking system.

Language Modelling Retrieval

Data-Efficient Reinforcement Learning for Malaria Control

no code implementations4 May 2021 Lixin Zou, Long Xia, Linfang Hou, Xiangyu Zhao, Dawei Yin

This work introduces a practical, data-efficient policy learning method, named Variance-Bonus Monte Carlo Tree Search~(VB-MCTS), which can copy with very little data and facilitate learning from scratch in only a few trials.

Decision Making Model-based Reinforcement Learning +2

First Target and Opinion then Polarity: Enhancing Target-opinion Correlation for Aspect Sentiment Triplet Extraction

no code implementations17 Feb 2021 Lianzhe Huang, Peiyi Wang, Sujian Li, Tianyu Liu, Xiaodong Zhang, Zhicong Cheng, Dawei Yin, Houfeng Wang

Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from a sentence, including target entities, associated sentiment polarities, and opinion spans which rationalize the polarities.

Aspect Sentiment Triplet Extraction

User-Inspired Posterior Network for Recommendation Reason Generation

no code implementations16 Feb 2021 Haolan Zhan, Hainan Zhang, Hongshen Chen, Lei Shen, Yanyan Lan, Zhuoye Ding, Dawei Yin

A simple and effective way is to extract keywords directly from the knowledge-base of products, i. e., attributes or title, as the recommendation reason.

Question Answering

SceneRec: Scene-Based Graph Neural Networks for Recommender Systems

no code implementations12 Feb 2021 Gang Wang, Ziyi Guo, Xiang Li, Dawei Yin, Shuai Ma

Collaborative filtering has been largely used to advance modern recommender systems to predict user preference.

Collaborative Filtering Recommendation Systems +1

Modeling Topical Relevance for Multi-Turn Dialogue Generation

no code implementations27 Sep 2020 Hainan Zhang, Yanyan Lan, Liang Pang, Hongshen Chen, Zhuoye Ding, Dawei Yin

Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appropriate responses accordingly.

Dialogue Generation

Neural Interactive Collaborative Filtering

1 code implementation4 Jul 2020 Lixin Zou, Long Xia, Yulong Gu, Xiangyu Zhao, Weidong Liu, Jimmy Xiangji Huang, Dawei Yin

Therefore, the proposed exploration policy, to balance between learning the user profile and making accurate recommendations, can be directly optimized by maximizing users' long-term satisfaction with reinforcement learning.

Collaborative Filtering Meta-Learning +2

CAST: A Correlation-based Adaptive Spectral Clustering Algorithm on Multi-scale Data

1 code implementation8 Jun 2020 Xiang Li, Ben Kao, Caihua Shan, Dawei Yin, Martin Ester

We study the problem of applying spectral clustering to cluster multi-scale data, which is data whose clusters are of various sizes and densities.

Robust Reinforcement Learning with Wasserstein Constraint

no code implementations1 Jun 2020 Linfang Hou, Liang Pang, Xin Hong, Yanyan Lan, Zhi-Ming Ma, Dawei Yin

Robust Reinforcement Learning aims to find the optimal policy with some extent of robustness to environmental dynamics.

reinforcement-learning Reinforcement Learning (RL)

Data Manipulation: Towards Effective Instance Learning for Neural Dialogue Generation via Learning to Augment and Reweight

no code implementations ACL 2020 Hengyi Cai, Hongshen Chen, Yonghao Song, Cheng Zhang, Xiaofang Zhao, Dawei Yin

In this paper, we propose a data manipulation framework to proactively reshape the data distribution towards reliable samples by augmenting and highlighting effective learning samples as well as reducing the effect of inefficient samples simultaneously.

Dialogue Generation

Adaptive Parameterization for Neural Dialogue Generation

1 code implementation IJCNLP 2019 Hengyi Cai, Hongshen Chen, Cheng Zhang, Yonghao Song, Xiaofang Zhao, Dawei Yin

For each conversation, the model generates parameters of the encoder-decoder by referring to the input context.

Dialogue Generation

GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks

2 code implementations17 Jan 2020 Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, Yi Chang

In this paper, we propose GraphLIME, a local interpretable model explanation for graphs using the Hilbert-Schmidt Independence Criterion (HSIC) Lasso, which is a nonlinear feature selection method.

Attribute-aware Sequence Network for Review Summarization

no code implementations IJCNLP 2019 Junjie Li, Xuepeng Wang, Dawei Yin, Cheng-qing Zong

Review summarization aims to generate a condensed summary for a review or multiple reviews.

Off-policy Learning for Multiple Loggers

no code implementations23 Jul 2019 Li He, Long Xia, Wei Zeng, Zhi-Ming Ma, Yihong Zhao, Dawei Yin

To make full use of such historical data, learning policies from multiple loggers becomes necessary.

Deep Social Collaborative Filtering

no code implementations16 Jul 2019 Wenqi Fan, Yao Ma, Dawei Yin, Jian-Ping Wang, Jiliang Tang, Qing Li

Meanwhile, most of these models treat neighbors' information equally without considering the specific recommendations.

Collaborative Filtering Recommendation Systems

Toward Simulating Environments in Reinforcement Learning Based Recommendations

no code implementations27 Jun 2019 Xiangyu Zhao, Long Xia, Lixin Zou, Dawei Yin, Jiliang Tang

Thus, it calls for a user simulator that can mimic real users' behaviors where we can pre-train and evaluate new recommendation algorithms.

Recommendation Systems reinforcement-learning +1

Graph Neural Networks for Social Recommendation

7 code implementations19 Feb 2019 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin

These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key.

Ranked #3 on Recommendation Systems on Epinions (using extra training data)

Recommendation Systems

Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems

no code implementations13 Feb 2019 Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin

Though reinforcement learning~(RL) naturally fits the problem of maximizing the long term rewards, applying RL to optimize long-term user engagement is still facing challenges: user behaviors are versatile and difficult to model, which typically consists of both instant feedback~(e. g. clicks, ordering) and delayed feedback~(e. g. dwell time, revisit); in addition, performing effective off-policy learning is still immature, especially when combining bootstrapping and function approximation.

Recommendation Systems reinforcement-learning +1

Whole-Chain Recommendations

no code implementations11 Feb 2019 Xiangyu Zhao, Long Xia, Linxin Zou, Hui Liu, Dawei Yin, Jiliang Tang

With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in developing RL-based recommender systems.

Multi-agent Reinforcement Learning Recommendation Systems +1

Product-Aware Answer Generation in E-Commerce Question-Answering

1 code implementation23 Jan 2019 Shen Gao, Zhaochun Ren, Yihong Eric Zhao, Dongyan Zhao, Dawei Yin, Rui Yan

In this paper, we propose the task of product-aware answer generation, which tends to generate an accurate and complete answer from large-scale unlabeled e-commerce reviews and product attributes.

Answer Generation Question Answering

Deep reinforcement learning for search, recommendation, and online advertising: a survey

no code implementations18 Dec 2018 Xiangyu Zhao, Long Xia, Jiliang Tang, Dawei Yin

Search, recommendation, and online advertising are the three most important information-providing mechanisms on the web.

reinforcement-learning Reinforcement Learning (RL)

Streaming Graph Neural Networks

2 code implementations24 Oct 2018 Yao Ma, Ziyi Guo, Zhaochun Ren, Eric Zhao, Jiliang Tang, Dawei Yin

Current graph neural network models cannot utilize the dynamic information in dynamic graphs.

Community Detection General Classification +3

Explicit State Tracking with Semi-Supervision for Neural Dialogue Generation

2 code implementations31 Aug 2018 Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen Chen, Shangsong Liang, Yihong Zhao, Dawei Yin

However, the \emph{expensive nature of state labeling} and the \emph{weak interpretability} make the dialogue state tracking a challenging problem for both task-oriented and non-task-oriented dialogue generation: For generating responses in task-oriented dialogues, state tracking is usually learned from manually annotated corpora, where the human annotation is expensive for training; for generating responses in non-task-oriented dialogues, most of existing work neglects the explicit state tracking due to the unlimited number of dialogue states.

Dialogue Generation Dialogue State Tracking

Linked Recurrent Neural Networks

no code implementations19 Aug 2018 Zhiwei Wang, Yao Ma, Dawei Yin, Jiliang Tang

Recurrent Neural Networks (RNNs) have been proven to be effective in modeling sequential data and they have been applied to boost a variety of tasks such as document classification, speech recognition and machine translation.

Document Classification Machine Translation +3

Multi-dimensional Graph Convolutional Networks

no code implementations18 Aug 2018 Yao Ma, Suhang Wang, Charu C. Aggarwal, Dawei Yin, Jiliang Tang

Convolutional neural networks (CNNs) leverage the great power in representation learning on regular grid data such as image and video.

Social and Information Networks

Knowledge Diffusion for Neural Dialogue Generation

1 code implementation ACL 2018 Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu, Dawei Yin

Our empirical study on a real-world dataset prove that our model is capable of generating meaningful, diverse and natural responses for both factoid-questions and knowledge grounded chi-chats.

Dialogue Generation Question Answering +1

Deep Reinforcement Learning for Page-wise Recommendations

no code implementations7 May 2018 Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, Jiliang Tang

In particular, we propose a principled approach to jointly generate a set of complementary items and the corresponding strategy to display them in a 2-D page; and propose a novel page-wise recommendation framework based on deep reinforcement learning, DeepPage, which can optimize a page of items with proper display based on real-time feedback from users.

Recommendation Systems reinforcement-learning +1

Deep Reinforcement Learning for List-wise Recommendations

7 code implementations30 Dec 2017 Xiangyu Zhao, Liang Zhang, Long Xia, Zhuoye Ding, Dawei Yin, Jiliang Tang

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services.

Recommendation Systems reinforcement-learning +1

Streaming Recommender Systems

no code implementations21 Jul 2016 Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A. Hasegawa-Johnson, Thomas S. Huang

The increasing popularity of real-world recommender systems produces data continuously and rapidly, and it becomes more realistic to study recommender systems under streaming scenarios.

Recommendation Systems

Consistent Collective Matrix Completion under Joint Low Rank Structure

no code implementations5 Dec 2014 Suriya Gunasekar, Makoto Yamada, Dawei Yin, Yi Chang

We address the collective matrix completion problem of jointly recovering a collection of matrices with shared structure from partial (and potentially noisy) observations.

Matrix Completion

N$^3$LARS: Minimum Redundancy Maximum Relevance Feature Selection for Large and High-dimensional Data

no code implementations10 Nov 2014 Makoto Yamada, Avishek Saha, Hua Ouyang, Dawei Yin, Yi Chang

We propose a feature selection method that finds non-redundant features from a large and high-dimensional data in nonlinear way.

Distributed Computing regression

Cannot find the paper you are looking for? You can Submit a new open access paper.