Search Results for author: Demis Hassabis

Found 34 papers, 20 papers with code

Bridging the Human-AI Knowledge Gap: Concept Discovery and Transfer in AlphaZero

no code implementations25 Oct 2023 Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, Been Kim

Artificial Intelligence (AI) systems have made remarkable progress, attaining super-human performance across various domains.

Game of Chess

Diversifying AI: Towards Creative Chess with AlphaZero

no code implementations17 Aug 2023 Tom Zahavy, Vivek Veeriah, Shaobo Hou, Kevin Waugh, Matthew Lai, Edouard Leurent, Nenad Tomasev, Lisa Schut, Demis Hassabis, Satinder Singh

In particular, we investigate whether a team of diverse AI systems can outperform a single AI in challenging tasks by generating more ideas as a group and then selecting the best ones.

Decision Making Game of Chess

Discovering faster matrix multiplication algorithms with reinforcement learning

2 code implementations Nature 2022 Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, Pushmeet Kohli

Particularly relevant is the case of 4 × 4 matrices in a finite field, where AlphaTensor’s algorithm improves on Strassen’s two-level algorithm for the first time, to our knowledge, since its discovery 50 years ago2.

reinforcement-learning Reinforcement Learning (RL)

Scaling Language Models: Methods, Analysis & Insights from Training Gopher

1 code implementation NA 2021 Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent SIfre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d'Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, Geoffrey Irving

Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world.

 Ranked #1 on College Mathematics on BIG-bench (using extra training data)

Abstract Algebra Anachronisms +133

Acquisition of Chess Knowledge in AlphaZero

no code implementations17 Nov 2021 Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Demis Hassabis, Been Kim, Ulrich Paquet, Vladimir Kramnik

In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess.

Game of Chess

Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model

18 code implementations19 Nov 2019 Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent SIfre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, David Silver

When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.

Atari Games Atari Games 100k +3

SCAN: Learning Hierarchical Compositional Visual Concepts

no code implementations ICLR 2018 Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal, Christopher P. Burgess, Matko Bosnjak, Murray Shanahan, Matthew Botvinick, Demis Hassabis, Alexander Lerchner

SCAN learns concepts through fast symbol association, grounding them in disentangled visual primitives that are discovered in an unsupervised manner.

Noisy Networks for Exploration

15 code implementations ICLR 2018 Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, Shane Legg

We introduce NoisyNet, a deep reinforcement learning agent with parametric noise added to its weights, and show that the induced stochasticity of the agent's policy can be used to aid efficient exploration.

Atari Games Efficient Exploration +2

Grounded Language Learning in a Simulated 3D World

1 code implementation20 Jun 2017 Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright, Chris Apps, Demis Hassabis, Phil Blunsom

Trained via a combination of reinforcement and unsupervised learning, and beginning with minimal prior knowledge, the agent learns to relate linguistic symbols to emergent perceptual representations of its physical surroundings and to pertinent sequences of actions.

Grounded language learning

The Forget-me-not Process

no code implementations NeurIPS 2016 Kieran Milan, Joel Veness, James Kirkpatrick, Michael Bowling, Anna Koop, Demis Hassabis

We introduce the Forget-me-not Process, an efficient, non-parametric meta-algorithm for online probabilistic sequence prediction for piecewise stationary, repeating sources.

Model-Free Episodic Control

3 code implementations14 Jun 2016 Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z. Leibo, Jack Rae, Daan Wierstra, Demis Hassabis

State of the art deep reinforcement learning algorithms take many millions of interactions to attain human-level performance.

Decision Making Hippocampus +2

Approximate Hubel-Wiesel Modules and the Data Structures of Neural Computation

no code implementations28 Dec 2015 Joel Z. Leibo, Julien Cornebise, Sergio Gómez, Demis Hassabis

This paper describes a framework for modeling the interface between perception and memory on the algorithmic level of analysis.

Hippocampus

Cannot find the paper you are looking for? You can Submit a new open access paper.