Search Results for author: Dheeru Dua

Found 15 papers, 3 papers with code

Successive Prompting for Decomposing Complex Questions

no code implementations8 Dec 2022 Dheeru Dua, Shivanshu Gupta, Sameer Singh, Matt Gardner

The intermediate supervision is typically manually written, which can be expensive to collect.

Question Answering

Tricks for Training Sparse Translation Models

no code implementations NAACL 2022 Dheeru Dua, Shruti Bhosale, Vedanuj Goswami, James Cross, Mike Lewis, Angela Fan

Multi-task learning with an unbalanced data distribution skews model learning towards high resource tasks, especially when model capacity is fixed and fully shared across all tasks.

Machine Translation Multi-Task Learning +1

Learning with Instance Bundles for Reading Comprehension

no code implementations EMNLP 2021 Dheeru Dua, Pradeep Dasigi, Sameer Singh, Matt Gardner

When training most modern reading comprehension models, all the questions associated with a context are treated as being independent from each other.

Reading Comprehension

Evaluating NLP Models via Contrast Sets

no code implementations1 Oct 2020 Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, Nitish Gupta, Hanna Hajishirzi, Gabriel Ilharco, Daniel Khashabi, Kevin Lin, Jiangming Liu, Nelson F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer Singh, Noah A. Smith, Sanjay Subramanian, Reut Tsarfaty, Eric Wallace, A. Zhang, Ben Zhou

Unfortunately, when a dataset has systematic gaps (e. g., annotation artifacts), these evaluations are misleading: a model can learn simple decision rules that perform well on the test set but do not capture a dataset's intended capabilities.

Reading Comprehension Sentiment Analysis +1

Benefits of Intermediate Annotations in Reading Comprehension

no code implementations ACL 2020 Dheeru Dua, Sameer Singh, Matt Gardner

Complex compositional reading comprehension datasets require performing latent sequential decisions that are learned via supervision from the final answer.

Reading Comprehension

Dynamic Sampling Strategies for Multi-Task Reading Comprehension

no code implementations ACL 2020 Ananth Gottumukkala, Dheeru Dua, Sameer Singh, Matt Gardner

Building general reading comprehension systems, capable of solving multiple datasets at the same time, is a recent aspirational goal in the research community.

Multi-Task Learning Reading Comprehension

ORB: An Open Reading Benchmark for Comprehensive Evaluation of Machine Reading Comprehension

no code implementations29 Dec 2019 Dheeru Dua, Ananth Gottumukkala, Alon Talmor, Sameer Singh, Matt Gardner

A lot of diverse reading comprehension datasets have recently been introduced to study various phenomena in natural language, ranging from simple paraphrase matching and entity typing to entity tracking and understanding the implications of the context.

Entity Typing Machine Reading Comprehension +3

Comprehensive Multi-Dataset Evaluation of Reading Comprehension

no code implementations WS 2019 Dheeru Dua, Ananth Gottumukkala, Alon Talmor, Sameer Singh, Matt Gardner

A lot of diverse reading comprehension datasets have recently been introduced to study various phenomena in natural language, ranging from simple paraphrase matching and entity typing to entity tracking and understanding the implications of the context.

Entity Typing Natural Language Understanding +3

PoMo: Generating Entity-Specific Post-Modifiers in Context

no code implementations NAACL 2019 Jun Seok Kang, Robert L. Logan IV, Zewei Chu, Yang Chen, Dheeru Dua, Kevin Gimpel, Sameer Singh, Niranjan Balasubramanian

Given a sentence about a target entity, the task is to automatically generate a post-modifier phrase that provides contextually relevant information about the entity.

Sentence

Generating Natural Adversarial Examples

1 code implementation ICLR 2018 Zhengli Zhao, Dheeru Dua, Sameer Singh

Due to their complex nature, it is hard to characterize the ways in which machine learning models can misbehave or be exploited when deployed.

Adversarial Attack Image Classification +3

Cannot find the paper you are looking for? You can Submit a new open access paper.