Search Results for author: Dian Yu

Found 53 papers, 25 papers with code

End-to-End Chinese Speaker Identification

1 code implementation NAACL 2022 Dian Yu, Ben Zhou, Dong Yu

End-to-end SI systems, on the other hand, are not limited by individual modules, but suffer from insufficient training data from the existing small-scale datasets.

coreference-resolution Coreference Resolution +5

Tree of Thoughts: Deliberate Problem Solving with Large Language Models

3 code implementations17 May 2023 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, Karthik Narasimhan

Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference.

Decision Making Language Modelling

Document-Level Machine Translation with Large Language Models

1 code implementation5 Apr 2023 Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang, Dian Yu, Shuming Shi, Zhaopeng Tu

Large language models (LLMs) such as Chat-GPT can produce coherent, cohesive, relevant, and fluent answers for various natural language processing (NLP) tasks.

Document Level Machine Translation Machine Translation +1

ZeroKBC: A Comprehensive Benchmark for Zero-Shot Knowledge Base Completion

1 code implementation6 Dec 2022 Pei Chen, Wenlin Yao, Hongming Zhang, Xiaoman Pan, Dian Yu, Dong Yu, Jianshu Chen

However, there has been limited research on the zero-shot KBC settings, where we need to deal with unseen entities and relations that emerge in a constantly growing knowledge base.

Knowledge Base Completion Knowledge Graphs

NarraSum: A Large-Scale Dataset for Abstractive Narrative Summarization

1 code implementation2 Dec 2022 Chao Zhao, Faeze Brahman, Kaiqiang Song, Wenlin Yao, Dian Yu, Snigdha Chaturvedi

To encourage research in this direction, we propose NarraSum, a large-scale narrative summarization dataset.

Natural Language Understanding

BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

2 code implementations9 Nov 2022 BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions.

Language Modelling Multilingual NLP

Knowledge-in-Context: Towards Knowledgeable Semi-Parametric Language Models

no code implementations28 Oct 2022 Xiaoman Pan, Wenlin Yao, Hongming Zhang, Dian Yu, Dong Yu, Jianshu Chen

In this paper, we develop a novel semi-parametric language model architecture, Knowledge-in-Context (KiC), which empowers a parametric text-to-text language model with a knowledge-rich external memory.

Language Modelling

Knowledge-grounded Dialog State Tracking

no code implementations13 Oct 2022 Dian Yu, Mingqiu Wang, Yuan Cao, Izhak Shafran, Laurent El Shafey, Hagen Soltau

Knowledge (including structured knowledge such as schema and ontology, and unstructured knowledge such as web corpus) is a critical part of dialog understanding, especially for unseen tasks and domains.

dialog state tracking Few-Shot Learning

Cross-Lingual Speaker Identification Using Distant Supervision

1 code implementation11 Oct 2022 Ben Zhou, Dian Yu, Dong Yu, Dan Roth

Speaker identification, determining which character said each utterance in literary text, benefits many downstream tasks.

Language Modelling Speaker Identification

ReAct: Synergizing Reasoning and Acting in Language Models

1 code implementation6 Oct 2022 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, Yuan Cao

While large language models (LLMs) have demonstrated impressive capabilities across tasks in language understanding and interactive decision making, their abilities for reasoning (e. g. chain-of-thought prompting) and acting (e. g. action plan generation) have primarily been studied as separate topics.

Decision Making Fact Verification +1

Zemi: Learning Zero-Shot Semi-Parametric Language Models from Multiple Tasks

1 code implementation1 Oct 2022 Zhenhailong Wang, Xiaoman Pan, Dian Yu, Dong Yu, Jianshu Chen, Heng Ji

Notably, our proposed $\text{Zemi}_\text{LARGE}$ outperforms T0-3B by 16% on all seven evaluation tasks while being 3. 9x smaller in model size.

Language Modelling Retrieval +1

Using Chatbots to Teach Languages

no code implementations31 Jul 2022 Yu Li, Chun-Yen Chen, Dian Yu, Sam Davidson, Ryan Hou, Xun Yuan, Yinghua Tan, Derek Pham, Zhou Yu

This paper reports on progress towards building an online language learning tool to provide learners with conversational experience by using dialog systems as conversation practice partners.

reinforcement-learning Reinforcement Learning (RL)

Unsupervised Slot Schema Induction for Task-oriented Dialog

no code implementations NAACL 2022 Dian Yu, Mingqiu Wang, Yuan Cao, Izhak Shafran, Laurent El Shafey, Hagen Soltau

Carefully-designed schemas describing how to collect and annotate dialog corpora are a prerequisite towards building task-oriented dialog systems.

dialog state tracking Response Generation

Learning-by-Narrating: Narrative Pre-Training for Zero-Shot Dialogue Comprehension

1 code implementation ACL 2022 Chao Zhao, Wenlin Yao, Dian Yu, Kaiqiang Song, Dong Yu, Jianshu Chen

Comprehending a dialogue requires a model to capture diverse kinds of key information in the utterances, which are either scattered around or implicitly implied in different turns of conversations.

Description-Driven Task-Oriented Dialog Modeling

no code implementations21 Jan 2022 Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu, Mingqiu Wang, Harrison Lee, Abhinav Rastogi, Izhak Shafran, Yonghui Wu

Task-oriented dialogue (TOD) systems are required to identify key information from conversations for the completion of given tasks.

dialog state tracking

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories

2 code implementations EMNLP 2021 Wenlin Yao, Xiaoman Pan, Lifeng Jin, Jianshu Chen, Dian Yu, Dong Yu

We then train a model to identify semantic equivalence between a target word in context and one of its glosses using these aligned inventories, which exhibits strong transfer capability to many WSD tasks.

Word Sense Disambiguation

Automatically Exposing Problems with Neural Dialog Models

1 code implementation EMNLP 2021 Dian Yu, Kenji Sagae

Neural dialog models are known to suffer from problems such as generating unsafe and inconsistent responses.

reinforcement-learning Reinforcement Learning (RL)

QA-Driven Zero-shot Slot Filling with Weak Supervision Pretraining

no code implementations ACL 2021 Xinya Du, Luheng He, Qi Li, Dian Yu, Panupong Pasupat, Yuan Zhang

To address this problem, we introduce QA-driven slot filling (QASF), which extracts slot-filler spans from utterances with a span-based QA model.

slot-filling Zero-shot Slot Filling

Few-shot Intent Classification and Slot Filling with Retrieved Examples

no code implementations NAACL 2021 Dian Yu, Luheng He, Yuan Zhang, Xinya Du, Panupong Pasupat, Qi Li

Few-shot learning arises in important practical scenarios, such as when a natural language understanding system needs to learn new semantic labels for an emerging, resource-scarce domain.

Classification Few-Shot Learning +8

MIDAS: A Dialog Act Annotation Scheme for Open Domain HumanMachine Spoken Conversations

no code implementations EACL 2021 Dian Yu, Zhou Yu

To validate our scheme, we leveraged transfer learning methods to train a multi-label dialog act prediction model and reached an F1 score of 0. 79.

Transfer Learning

Attribute Alignment: Controlling Text Generation from Pre-trained Language Models

1 code implementation Findings (EMNLP) 2021 Dian Yu, Zhou Yu, Kenji Sagae

Large language models benefit from training with a large amount of unlabeled text, which gives them increasingly fluent and diverse generation capabilities.

Language Modelling Text Generation

Self-Teaching Machines to Read and Comprehend with Large-Scale Multi-Subject Question-Answering Data

no code implementations Findings (EMNLP) 2021 Dian Yu, Kai Sun, Dong Yu, Claire Cardie

In spite of much recent research in the area, it is still unclear whether subject-area question-answering data is useful for machine reading comprehension (MRC) tasks.

Machine Reading Comprehension Multiple-choice +1

A Efficient Multimodal Framework for Large Scale Emotion Recognition by Fusing Music and Electrodermal Activity Signals

1 code implementation22 Aug 2020 Guanghao Yin, Shou-qian Sun, Dian Yu, Dejian Li, Kejun Zhang

In this paper, our work makes an attempt to fuse the subject individual EDA features and the external evoked music features.

Emotion Recognition

Recurrent Chunking Mechanisms for Long-Text Machine Reading Comprehension

1 code implementation ACL 2020 Hongyu Gong, Yelong Shen, Dian Yu, Jianshu Chen, Dong Yu

In this paper, we study machine reading comprehension (MRC) on long texts, where a model takes as inputs a lengthy document and a question and then extracts a text span from the document as an answer.

Chunking Machine Reading Comprehension +1

Dialogue-Based Relation Extraction

3 code implementations ACL 2020 Dian Yu, Kai Sun, Claire Cardie, Dong Yu

We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue.

Ranked #6 on Dialog Relation Extraction on DialogRE (F1c (v1) metric)

Dialog Relation Extraction

Filling Conversation Ellipsis for Better Social Dialog Understanding

no code implementations25 Nov 2019 Xiyuan Zhang, Chengxi Li, Dian Yu, Samuel Davidson, Zhou Yu

We then train a prediction model using both utterances containing ellipsis and our automatically completed utterances.

Semantic Role Labeling Sentence Completion

Improving Pre-Trained Multilingual Model with Vocabulary Expansion

no code implementations CONLL 2019 Hai Wang, Dian Yu, Kai Sun, Jianshu Chen, Dong Yu

However, in multilingual setting, it is extremely resource-consuming to pre-train a deep language model over large-scale corpora for each language.

Language Modelling Machine Reading Comprehension +5

Improving Pre-Trained Multilingual Models with Vocabulary Expansion

no code implementations26 Sep 2019 Hai Wang, Dian Yu, Kai Sun, Janshu Chen, Dong Yu

However, in multilingual setting, it is extremely resource-consuming to pre-train a deep language model over large-scale corpora for each language.

Language Modelling Machine Reading Comprehension +5

Teaching Pretrained Models with Commonsense Reasoning: A Preliminary KB-Based Approach

no code implementations20 Sep 2019 Shiyang Li, Jianshu Chen, Dian Yu

Recently, pretrained language models (e. g., BERT) have achieved great success on many downstream natural language understanding tasks and exhibit a certain level of commonsense reasoning ability.

Few-Shot Learning Logical Reasoning +2

Dependency Parsing for Spoken Dialog Systems

no code implementations IJCNLP 2019 Sam Davidson, Dian Yu, Zhou Yu

Dependency parsing of conversational input can play an important role in language understanding for dialog systems by identifying the relationships between entities extracted from user utterances.

Dependency Parsing

MIDAS: A Dialog Act Annotation Scheme for Open Domain Human Machine Spoken Conversations

1 code implementation27 Aug 2019 Dian Yu, Zhou Yu

Previous dialog act schemes, such as SWBD-DAMSL, are designed for human-human conversations, in which conversation partners have perfect language understanding ability.

Transfer Learning

User independent Emotion Recognition with Residual Signal-Image Network

no code implementations10 Aug 2019 Guanghao Yin, Shou-qian Sun, HUI ZHANG, Dian Yu, Chao Li, Ke-jun Zhang, Ning Zou

To the best of author's knowledge, our method is the first attempt to classify large scale subject-independent emotion with 7962 pieces of EDA signals from 457 subjects.

Binary Classification Emotion Recognition

Improving Question Answering with External Knowledge

1 code implementation WS 2019 Xiaoman Pan, Kai Sun, Dian Yu, Jianshu Chen, Heng Ji, Claire Cardie, Dong Yu

We focus on multiple-choice question answering (QA) tasks in subject areas such as science, where we require both broad background knowledge and the facts from the given subject-area reference corpus.

Multiple-choice Question Answering

DREAM: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension

1 code implementation1 Feb 2019 Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi, Claire Cardie

DREAM is likely to present significant challenges for existing reading comprehension systems: 84% of answers are non-extractive, 85% of questions require reasoning beyond a single sentence, and 34% of questions also involve commonsense knowledge.

Dialogue Understanding Multiple-choice +1

Open Relation Extraction and Grounding

no code implementations IJCNLP 2017 Dian Yu, Lifu Huang, Heng Ji

Previous open Relation Extraction (open RE) approaches mainly rely on linguistic patterns and constraints to extract important relational triples from large-scale corpora.

Relation Extraction slot-filling +1

Cannot find the paper you are looking for? You can Submit a new open access paper.