no code implementations • 17 Dec 2024 • Soumyasundar Pal, Didier Chételat, Yingxue Zhang, Mark Coates
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to generate a sequence of intermediate steps.
1 code implementation • 16 Oct 2023 • Chendi Qian, Didier Chételat, Christopher Morris
Recently, machine learning, particularly message-passing graph neural networks (MPNNs), has gained traction in enhancing exact optimization algorithms.
1 code implementation • 30 Oct 2022 • Abdel Ghani Labassi, Didier Chételat, Andrea Lodi
Branch-and-bound approaches in integer programming require ordering portions of the space to explore next, a problem known as node comparison.
1 code implementation • 23 May 2022 • Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, Karen Aardal
State-of-the-art Mixed Integer Linear Program (MILP) solvers combine systematic tree search with a plethora of hard-coded heuristics, such as the branching rule.
2 code implementations • 4 Mar 2022 • Maxime Gasse, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil, Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Christopher Morris, Dimitri J. Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang, Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei Huang, Shuchang Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, Mao Kun
Combinatorial optimization is a well-established area in operations research and computer science.
1 code implementation • 6 Apr 2021 • Antoine Prouvost, Justin Dumouchelle, Maxime Gasse, Didier Chételat, Andrea Lodi
In this paper we describe Ecole (Extensible Combinatorial Optimization Learning Environments), a library to facilitate integration of machine learning in combinatorial optimization solvers.
no code implementations • 18 Feb 2021 • Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, Petar Veličković
Combinatorial optimization is a well-established area in operations research and computer science.
2 code implementations • NeurIPS Workshop LMCA 2020 • Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, Andrea Lodi
We present Ecole, a new library to simplify machine learning research for combinatorial optimization.
no code implementations • 2 Sep 2020 • Aurélien Serre, Didier Chételat, Andrea Lodi
Many offline unsupervised change point detection algorithms rely on minimizing a penalized sum of segment-wise costs.
6 code implementations • NeurIPS 2019 • Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, Andrea Lodi
Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm.